Modeling of Risk Measure Bonds Using the Beta Model

IF 0.3 Q4 BUSINESS, FINANCE
F. Hachicha, A. Hachicha, A. Masmoudi
{"title":"Modeling of Risk Measure Bonds Using the Beta Model","authors":"F. Hachicha, A. Hachicha, A. Masmoudi","doi":"10.1142/s0219091521500338","DOIUrl":null,"url":null,"abstract":"Duration and convexity are important measures in fixed-income portfolio management. In this paper, we analyze this measure of the bonds by applying the beta model. The general usefulness of the beta probability distribution enhances its applicability in a wide range of reliability analyses, especially in the theory and practice of reliability management. We estimate the beta density function of the duration/convexity. This estimate is based on two important and simple models of short rates, namely, Vasicek and CIR (Cox, Ingersoll, and Ross CIR). The models are described and then their sensitivity of the models with respect to changes in the parameters is studied. We generate the stochastic interest rate on the duration and convexity model. The main results show that the beta probability distribution can be applied to model each phase of the risk function. This distribution approved its effectiveness, simplicity and flexibility. In this paper, we are interested in providing a decision-making tool for the manager in order to minimize the portfolio risk. It is helpful to have a model that is reasonably simple and suitable to different maturity of bonds. Also, it is widely used by investors for choosing bond portfolio immunization through the investment strategy. The finding also shows that the probability of risk measured by the reliability function is to highlight the relationship between duration/convexity and different risk levels. With these new results, this paper offers several implications for investors and risk management purposes.","PeriodicalId":45653,"journal":{"name":"Review of Pacific Basin Financial Markets and Policies","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Pacific Basin Financial Markets and Policies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219091521500338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Duration and convexity are important measures in fixed-income portfolio management. In this paper, we analyze this measure of the bonds by applying the beta model. The general usefulness of the beta probability distribution enhances its applicability in a wide range of reliability analyses, especially in the theory and practice of reliability management. We estimate the beta density function of the duration/convexity. This estimate is based on two important and simple models of short rates, namely, Vasicek and CIR (Cox, Ingersoll, and Ross CIR). The models are described and then their sensitivity of the models with respect to changes in the parameters is studied. We generate the stochastic interest rate on the duration and convexity model. The main results show that the beta probability distribution can be applied to model each phase of the risk function. This distribution approved its effectiveness, simplicity and flexibility. In this paper, we are interested in providing a decision-making tool for the manager in order to minimize the portfolio risk. It is helpful to have a model that is reasonably simple and suitable to different maturity of bonds. Also, it is widely used by investors for choosing bond portfolio immunization through the investment strategy. The finding also shows that the probability of risk measured by the reliability function is to highlight the relationship between duration/convexity and different risk levels. With these new results, this paper offers several implications for investors and risk management purposes.
用Beta模型建模风险度量债券
久期和凸性是固定收益投资组合管理的重要指标。在本文中,我们用beta模型来分析这种债券的度量。概率分布的通用性增强了它在可靠性分析中的广泛适用性,特别是在可靠性管理的理论和实践中。我们估计持续时间/凸度的beta密度函数。这一估计是基于两个重要而简单的短期利率模型,即Vasicek和CIR (Cox, Ingersoll和Ross CIR)。首先对模型进行了描述,然后研究了模型对参数变化的敏感性。我们在存续期和凸性模型上生成随机利率。主要结果表明,贝塔概率分布可用于对风险函数的各个阶段进行建模。这种分配认可了它的有效性、简单性和灵活性。在本文中,我们感兴趣的是为管理者提供一种决策工具,以使投资组合风险最小化。建立一个合理简单、适合于不同期限债券的模型是有帮助的。同时,它也被投资者广泛用于通过投资策略选择债券投资组合免疫。研究结果还表明,通过信度函数测量的风险概率突出了持续时间/凸度与不同风险水平之间的关系。根据这些新结果,本文为投资者和风险管理提供了一些启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
11.10%
发文量
36
期刊介绍: This journal concentrates on global interdisciplinary research in finance, economics and accounting. The major topics include: 1. Business, economic and financial relations among the Pacific rim countries. 2. Financial markets and industries. 3. Options and futures markets of the United States and other Pacific rim countries. 4. International accounting issues related to U.S. companies investing in Pacific rim countries. 5. The issue of and strategy for developing Tokyo, Taipei, Shanghai, Sydney, Seoul, Hong Kong, Singapore, Kuala Lumpur, Bangkok, Jakarta, and Manila as international or regional financial centers. 6. Global monetary and foreign exchange policy, and 7. Other high quality interdisciplinary research in global accounting, business, economics and finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信