Enhancing the Speed of the Learning Vector Quantization (LVQ) Algorithm by Adding Partial Distance Computation

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Orieb Abualghanam, Omar Y. Adwan, Mohammad A. Al Shariah, Mohammad Qatawneh
{"title":"Enhancing the Speed of the Learning Vector Quantization (LVQ) Algorithm by Adding Partial Distance Computation","authors":"Orieb Abualghanam, Omar Y. Adwan, Mohammad A. Al Shariah, Mohammad Qatawneh","doi":"10.2478/cait-2022-0015","DOIUrl":null,"url":null,"abstract":"Abstract Learning Vector Quantization (LVQ) is one of the most widely used classification approaches. LVQ faces a problem as when the size of data grows large it becomes slower. In this paper, a modified version of LVQ, which is called PDLVQ is proposed to accelerate the traditional version. The proposed scheme aims to avoid unnecessary computations by applying an efficient Partial Distance (PD) computation strategy. Three different benchmark datasets are used in the experiments. The comparisons have been done between LVQ and PDLVQ in terms of runtime and in result, it turns out that PDLVQ shows better efficiency than LVQ. PDLVQ has achieved up to 37% efficiency in runtime compared to LVQ when the dimensions have increased. Also, the enhanced algorithm (PDLVQ) shows clear enhancement to decrease runtime when the size of dimensions, the number of clusters, or the size of data becomes increased compared with the traditional one which is LVQ.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Learning Vector Quantization (LVQ) is one of the most widely used classification approaches. LVQ faces a problem as when the size of data grows large it becomes slower. In this paper, a modified version of LVQ, which is called PDLVQ is proposed to accelerate the traditional version. The proposed scheme aims to avoid unnecessary computations by applying an efficient Partial Distance (PD) computation strategy. Three different benchmark datasets are used in the experiments. The comparisons have been done between LVQ and PDLVQ in terms of runtime and in result, it turns out that PDLVQ shows better efficiency than LVQ. PDLVQ has achieved up to 37% efficiency in runtime compared to LVQ when the dimensions have increased. Also, the enhanced algorithm (PDLVQ) shows clear enhancement to decrease runtime when the size of dimensions, the number of clusters, or the size of data becomes increased compared with the traditional one which is LVQ.
加入部分距离计算提高学习向量量化(LVQ)算法的速度
摘要学习矢量量化(LVQ)是应用最广泛的分类方法之一。LVQ面临一个问题,即当数据大小变大时,它会变慢。本文提出了一种LVQ的改进版本,称为PDLVQ,以加速传统版本。所提出的方案旨在通过应用有效的局部距离(PD)计算策略来避免不必要的计算。实验中使用了三个不同的基准数据集。在运行时间方面对LVQ和PDLVQ进行了比较,结果表明,PDLVQ显示出比LVQ更好的效率。与尺寸增加时的LVQ相比,PDLVQ在运行时实现了高达37%的效率。此外,与传统的LVQ算法相比,当维度的大小、集群的数量或数据的大小增加时,增强算法(PDLVQ)显示出明显的增强,以减少运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信