{"title":"Synthesis and characterization of nanocellulose from watermelon rinds and water hyacinth","authors":"Remya Pk, Manju Ms, Abith Sunil, Athulya Ks, Jerome Joseph, Jyothsna Tu","doi":"10.1177/20412479231174443","DOIUrl":null,"url":null,"abstract":"Nanocellulose derived from cellulose, the abundant natural polymer, is used in various applications due to its superior chemical, mechanical and thermal properties along with good biocompatibility and biodegradability. This paper reports an investigation of the extraction of nanocellulose from two freely available natural precursors-watermelon rinds and water hyacinth leaves. Cellulose isolation was carried out through chemical methods, including acid and alkali treatments followed by bleaching. The chemical composition, percentage crystallinity and particle size were studied using various characterization techniques. FTIR spectra indicate the removal of hemicelluloses, pectin, and lignin resulting in the effective isolation of cellulose from both precursors. Results of XRD indicate a high concentration of Cellulose Nanocrystals (CNCs) in the treated sample. The FESEM and SEM-EDAX images also confirm the formation of CNCs. TGA and DSC results show excellent thermal stability for both CNCs. Investigations on the properties of a CNC-reinforced epoxy composite are also reported. Results indicate considerable improvement in the mechanical properties, thermal stability and thermal conductivity of the composites compared to the pristine polymer.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20412479231174443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocellulose derived from cellulose, the abundant natural polymer, is used in various applications due to its superior chemical, mechanical and thermal properties along with good biocompatibility and biodegradability. This paper reports an investigation of the extraction of nanocellulose from two freely available natural precursors-watermelon rinds and water hyacinth leaves. Cellulose isolation was carried out through chemical methods, including acid and alkali treatments followed by bleaching. The chemical composition, percentage crystallinity and particle size were studied using various characterization techniques. FTIR spectra indicate the removal of hemicelluloses, pectin, and lignin resulting in the effective isolation of cellulose from both precursors. Results of XRD indicate a high concentration of Cellulose Nanocrystals (CNCs) in the treated sample. The FESEM and SEM-EDAX images also confirm the formation of CNCs. TGA and DSC results show excellent thermal stability for both CNCs. Investigations on the properties of a CNC-reinforced epoxy composite are also reported. Results indicate considerable improvement in the mechanical properties, thermal stability and thermal conductivity of the composites compared to the pristine polymer.
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.