Realization of a polarization-insensitive optical frequency-domain reflectometer using an I/Q homodyne detection

IF 1.9 4区 物理与天体物理 Q3 OPTICS
Alin Jderu, Marcelo A. Soto, Marius Enachescu, Dominik Ziegler
{"title":"Realization of a polarization-insensitive optical frequency-domain reflectometer using an I/Q homodyne detection","authors":"Alin Jderu,&nbsp;Marcelo A. Soto,&nbsp;Marius Enachescu,&nbsp;Dominik Ziegler","doi":"10.1186/s41476-021-00165-8","DOIUrl":null,"url":null,"abstract":"<div><p>We report on the development and implementation of an optical frequency-domain reflectometer (OFDR) sensing platform. OFDR allows to measure changes in strain and temperature using optical fibers with a length of several tens of meters with very high spatial resolution. We discuss the operation principles and challenges to implement an OFDR system using optical homodyne detection based on a dual-polarization 90° optical hybrid. Our setup exhibits polarization and phase diversity, fully automated data acquisition and data processing using a LabVIEW-based implemented software environment. Using an optical hybrid enables to discriminate phase, amplitude and polarization by interfering the Rayleigh scatter signal and a local oscillator with four 90° phase stepped interferences between the two signals. Without averaging and a fast acquisition time of 230 ms, our preliminary results show a spatial resolution of 5 cm and a temperature resolution of about 0.1 Kelvin on a 3 m-long fiber.</p></div>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"17 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jeos.springeropen.com/counter/pdf/10.1186/s41476-021-00165-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-021-00165-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We report on the development and implementation of an optical frequency-domain reflectometer (OFDR) sensing platform. OFDR allows to measure changes in strain and temperature using optical fibers with a length of several tens of meters with very high spatial resolution. We discuss the operation principles and challenges to implement an OFDR system using optical homodyne detection based on a dual-polarization 90° optical hybrid. Our setup exhibits polarization and phase diversity, fully automated data acquisition and data processing using a LabVIEW-based implemented software environment. Using an optical hybrid enables to discriminate phase, amplitude and polarization by interfering the Rayleigh scatter signal and a local oscillator with four 90° phase stepped interferences between the two signals. Without averaging and a fast acquisition time of 230 ms, our preliminary results show a spatial resolution of 5 cm and a temperature resolution of about 0.1 Kelvin on a 3 m-long fiber.

利用I/Q纯差检测实现偏振不敏感光频域反射计
我们报告了光学频域反射仪(OFDR)传感平台的开发和实施情况。通过使用几十米长、空间分辨率极高的光纤,OFDR 可以测量应变和温度的变化。我们讨论了使用基于双偏振 90° 混合光学系统的光学同调检测技术实现 OFDR 系统的工作原理和挑战。我们的装置具有偏振和相位分集功能,可使用基于 LabVIEW 的软件环境进行全自动数据采集和数据处理。使用光学混合器,可以通过干扰瑞利散射信号和本地振荡器,在两个信号之间进行四个 90° 相位阶跃干扰,从而实现相位、振幅和偏振的分辨。在没有平均值和 230 毫秒快速采集时间的情况下,我们的初步结果显示,3 米长光纤的空间分辨率为 5 厘米,温度分辨率约为 0.1 开尔文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信