On-site rapid detection of aging of Pericarpium Citri Reticulatae using multispectral imaging

IF 1.6 4区 化学 Q3 CHEMISTRY, APPLIED
Yuchen Guo, Xiangyang Yu, Weibin Hong, Yefan Cai, Wanbang Xu, hongyu Gu
{"title":"On-site rapid detection of aging of Pericarpium Citri Reticulatae using multispectral imaging","authors":"Yuchen Guo, Xiangyang Yu, Weibin Hong, Yefan Cai, Wanbang Xu, hongyu Gu","doi":"10.1177/09670335231194737","DOIUrl":null,"url":null,"abstract":"Pericarpium Citri Reticulatae is a traditional Chinese medicine with high medicinal value, and its storage age has a great impact on its ethno-pharmaceutical relevance. At present, there is a situation in the market place where Pericarpium Citri Reticulatae with short storage age is fraudulently sold as Pericarpium Citri Reticulatae with long storage age, and some unaged orange peels dyed with tea are sold as Pericarpium Citri Reticulatae at a high price. In this study, a rapid, on-site method for identifying the storage age of Xinhui Pericarpium Citri Reticulatae based on spectral imaging technology was described. The image features and spectral features were extracted respectively from the surface reflection spectral images of Pericarpium Citri Reticulatae, and a machine learning model was established to identify the storage age. This study explored the classification effect of the combination of different spectral pre-processing methods and machine learning models, and finally selected the combination of standard normal variate and random forest models, to achieve 95% accuracy on the test dataset, showing excellent generalization performance. The result shows that the spectral imaging technology can rapidly identify the storage age of Xinhui Pericarpium Citri Reticulatae in real time, which has a great application prospect in the detection of the properties of medicinal materials.","PeriodicalId":16551,"journal":{"name":"Journal of Near Infrared Spectroscopy","volume":"31 1","pages":"263 - 270"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Near Infrared Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335231194737","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Pericarpium Citri Reticulatae is a traditional Chinese medicine with high medicinal value, and its storage age has a great impact on its ethno-pharmaceutical relevance. At present, there is a situation in the market place where Pericarpium Citri Reticulatae with short storage age is fraudulently sold as Pericarpium Citri Reticulatae with long storage age, and some unaged orange peels dyed with tea are sold as Pericarpium Citri Reticulatae at a high price. In this study, a rapid, on-site method for identifying the storage age of Xinhui Pericarpium Citri Reticulatae based on spectral imaging technology was described. The image features and spectral features were extracted respectively from the surface reflection spectral images of Pericarpium Citri Reticulatae, and a machine learning model was established to identify the storage age. This study explored the classification effect of the combination of different spectral pre-processing methods and machine learning models, and finally selected the combination of standard normal variate and random forest models, to achieve 95% accuracy on the test dataset, showing excellent generalization performance. The result shows that the spectral imaging technology can rapidly identify the storage age of Xinhui Pericarpium Citri Reticulatae in real time, which has a great application prospect in the detection of the properties of medicinal materials.
利用多光谱成像技术现场快速检测柑桔果皮的老化
陈皮是一种具有较高药用价值的中药材,其贮藏年龄对其民族药学相关性有很大影响。目前,市场上存在将贮存期短的陈皮冒充贮存期长的陈皮进行欺诈销售的情况,一些用茶叶染色的未老化陈皮冒充陈皮进行高价销售。本研究提出了一种基于光谱成像技术的快速、现场鉴定新会陈皮贮藏年龄的方法。从陈皮的表面反射光谱图像中分别提取图像特征和光谱特征,并建立了识别陈皮贮藏年龄的机器学习模型。本研究探索了不同光谱预处理方法和机器学习模型相结合的分类效果,最终选择了标准正态变量和随机森林模型相结合,在测试数据集上实现了95%的准确率,显示出优异的泛化性能。结果表明,光谱成像技术可以实时快速识别新会陈皮的贮藏年龄,在药材性质检测方面具有很大的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
35
审稿时长
6 months
期刊介绍: JNIRS — Journal of Near Infrared Spectroscopy is a peer reviewed journal, publishing original research papers, short communications, review articles and letters concerned with near infrared spectroscopy and technology, its application, new instrumentation and the use of chemometric and data handling techniques within NIR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信