Strong orbit equivalence in Cantor dynamics and simple locally finite groups

Pub Date : 2020-10-20 DOI:10.4064/fm227-7-2022
Simon Robert
{"title":"Strong orbit equivalence in Cantor dynamics and simple locally finite groups","authors":"Simon Robert","doi":"10.4064/fm227-7-2022","DOIUrl":null,"url":null,"abstract":"In this article, we give a dynamical and elementary proof of a result of Giordano, Putnam and Skau which establishes a necessary and sufficient condition for two minimal homeomorphisms of a Cantor space to be strong orbit equivalent. Our argument is based on a detailed study of some countable locally finite groups attached to minimal homeomorphisms. This approach also enables us to prove that the Borel complexity of the isomorphism relation on simple locally finite groups is a universal relation arising from a Borel S∞-action.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm227-7-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we give a dynamical and elementary proof of a result of Giordano, Putnam and Skau which establishes a necessary and sufficient condition for two minimal homeomorphisms of a Cantor space to be strong orbit equivalent. Our argument is based on a detailed study of some countable locally finite groups attached to minimal homeomorphisms. This approach also enables us to prove that the Borel complexity of the isomorphism relation on simple locally finite groups is a universal relation arising from a Borel S∞-action.
分享
查看原文
Cantor动力学和简单局部有限群中的强轨道等价
本文给出了Giordano、Putnam和Skau的一个结果的动力初等证明,该结果建立了Cantor空间的两个极小同胚为强轨道等价的充要条件。我们的论点是基于对一些附属于极小同胚的可数局部有限群的详细研究。该方法还使我们能够证明简单局部有限群上同构关系的Borel复杂性是由Borel S∞作用引起的普遍关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信