Analysis of simultaneous inpainting and geometric separation based on sparse decomposition

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Van Tiep Do, R. Levie, Gitta Kutyniok
{"title":"Analysis of simultaneous inpainting and geometric separation based on sparse decomposition","authors":"Van Tiep Do, R. Levie, Gitta Kutyniok","doi":"10.1142/S021953052150007X","DOIUrl":null,"url":null,"abstract":"Natural images are often the superposition of various parts of different geometric characteristics. For instance, an image might be a mixture of cartoon and texture structures. In addition, images are often given with missing data. In this paper, we develop a method for simultaneously decomposing an image to its two underlying parts and inpainting the missing data. Our separation–inpainting method is based on an [Formula: see text] minimization approach, using two dictionaries, each sparsifying one of the image parts but not the other. We introduce a comprehensive convergence analysis of our method, in a general setting, utilizing the concepts of joint concentration, clustered sparsity, and cluster coherence. As the main application of our theory, we consider the problem of separating and inpainting an image to a cartoon and texture parts.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S021953052150007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3

Abstract

Natural images are often the superposition of various parts of different geometric characteristics. For instance, an image might be a mixture of cartoon and texture structures. In addition, images are often given with missing data. In this paper, we develop a method for simultaneously decomposing an image to its two underlying parts and inpainting the missing data. Our separation–inpainting method is based on an [Formula: see text] minimization approach, using two dictionaries, each sparsifying one of the image parts but not the other. We introduce a comprehensive convergence analysis of our method, in a general setting, utilizing the concepts of joint concentration, clustered sparsity, and cluster coherence. As the main application of our theory, we consider the problem of separating and inpainting an image to a cartoon and texture parts.
基于稀疏分解的同时修复和几何分离分析
自然图像往往是不同几何特征的各个部分的叠加。例如,一个图像可能是卡通和纹理结构的混合。此外,图像通常带有缺失的数据。在本文中,我们开发了一种同时将图像分解为其两个底层部分并对缺失数据进行补绘的方法。我们的分离-绘制方法是基于[公式:见文本]最小化方法,使用两个字典,每个字典稀疏图像的一部分,而不是其他部分。我们在一般情况下,利用联合集中、聚类稀疏性和聚类相干性的概念,对我们的方法进行了全面的收敛分析。作为我们理论的主要应用,我们考虑了将图像分离并绘制成卡通和纹理部分的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信