Arbitrarily Sparse Spectra for Self-Affine Spectral Measures

Pub Date : 2023-02-08 DOI:10.1007/s10476-023-0191-9
L.-X. An, C.-K. Lai
{"title":"Arbitrarily Sparse Spectra for Self-Affine Spectral Measures","authors":"L.-X. An,&nbsp;C.-K. Lai","doi":"10.1007/s10476-023-0191-9","DOIUrl":null,"url":null,"abstract":"<div><p>Given an expansive matrix <i>R</i> ∈ <i>M</i><sub><i>d</i></sub>(ℤ) and a finite set of digit <i>B</i> taken from ℤ<sup><i>d</i></sup>/<i>R</i>(<i>ℤ</i><sup><i>d</i></sup>). It was shown previously that if we can find an <i>L</i> such that (<i>R, B, L</i>) forms a Hadamard triple, then the associated fractal self-affine measure generated by (<i>R, B</i>) admits an exponential orthonormal basis of certain frequency set Λ, and hence it is termed as a spectral measure. In this paper, we show that if #<i>B</i> &lt; ∣det(<i>R</i>)∣, not only it is spectral, we can also construct arbitrarily sparse spectrum Λ in the sense that its Beurling dimension is zero.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0191-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Given an expansive matrix RMd(ℤ) and a finite set of digit B taken from ℤd/R(d). It was shown previously that if we can find an L such that (R, B, L) forms a Hadamard triple, then the associated fractal self-affine measure generated by (R, B) admits an exponential orthonormal basis of certain frequency set Λ, and hence it is termed as a spectral measure. In this paper, we show that if #B < ∣det(R)∣, not only it is spectral, we can also construct arbitrarily sparse spectrum Λ in the sense that its Beurling dimension is zero.

分享
查看原文
自仿射谱测度的任意稀疏谱
给定一个扩张矩阵R∈Md(ℤ) 以及从ℤd/R(ℤd) 。先前已经表明,如果我们可以找到一个L,使得(R,B,L)形成Hadamard三元组,那么由(R,B)生成的相关分形自仿射测度允许某个频率集∧的指数正交基,因此它被称为谱测度。在本文中,我们证明了如果#B<det(R)Ş,它不仅是谱的,我们还可以在其Beurling维数为零的意义上构造任意稀疏的谱∧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信