Ruitao Wang, Chenguang Li, Jian Zhang, S.-D. Yin, Weixing Zhu, Yan Wang
{"title":"A 18–44 GHz Low Noise Amplifier With Input Matching and Bandwidth Extension Techniques","authors":"Ruitao Wang, Chenguang Li, Jian Zhang, S.-D. Yin, Weixing Zhu, Yan Wang","doi":"10.1109/LMWC.2022.3163462","DOIUrl":null,"url":null,"abstract":"This letter presents a low noise amplifier (LNA) with a 3-dB gain bandwidth (3-dB BW) of 18–44 GHz in 65-nm CMOS technology. By deriving an analytical equation of input impedance, a co-design methodology for the first two stages of LNA that can simultaneously achieve broadband input matching and low noise figure (NF) is implemented. Weakly coupled asymmetric transformers that introduce a section of reverse parallel winding in the primary coil are designed to realize broadband interstage matching, optimize the gain flatness and boost the transconductance. The proposed LNA achieves a measured peak gain of 19.5 dB with a fractional 3-dB gain bandwidth (FBW) of 83.8%, covering the whole <inline-formula> <tex-math notation=\"LaTeX\">$K$ </tex-math></inline-formula>-band and <inline-formula> <tex-math notation=\"LaTeX\">$Ka$ </tex-math></inline-formula>-band. The measured NF is 2.6–3.5 dB from 20 to 43 GHz. To the best of our knowledge, the proposed LNA achieves the highest 3-dB BW and FBW with competitive NF. The measured input 1-dB gain compression point (<inline-formula> <tex-math notation=\"LaTeX\">$\\text {IP}_{\\mathrm {1\\,dB}}$ </tex-math></inline-formula>) ranges from −23 to −18.5 dBm over the entire 3-dB gain bandwidth.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1083-1086"},"PeriodicalIF":2.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3163462","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6
Abstract
This letter presents a low noise amplifier (LNA) with a 3-dB gain bandwidth (3-dB BW) of 18–44 GHz in 65-nm CMOS technology. By deriving an analytical equation of input impedance, a co-design methodology for the first two stages of LNA that can simultaneously achieve broadband input matching and low noise figure (NF) is implemented. Weakly coupled asymmetric transformers that introduce a section of reverse parallel winding in the primary coil are designed to realize broadband interstage matching, optimize the gain flatness and boost the transconductance. The proposed LNA achieves a measured peak gain of 19.5 dB with a fractional 3-dB gain bandwidth (FBW) of 83.8%, covering the whole $K$ -band and $Ka$ -band. The measured NF is 2.6–3.5 dB from 20 to 43 GHz. To the best of our knowledge, the proposed LNA achieves the highest 3-dB BW and FBW with competitive NF. The measured input 1-dB gain compression point ($\text {IP}_{\mathrm {1\,dB}}$ ) ranges from −23 to −18.5 dBm over the entire 3-dB gain bandwidth.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.