Investigating energy production and wake losses of multi-gigawatt offshore wind farms with atmospheric large-eddy simulation

IF 3.6 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
P. Baas, R. Verzijlbergh, Pim van Dorp, Harm J. J. Jonker
{"title":"Investigating energy production and wake losses of multi-gigawatt offshore wind farms with atmospheric large-eddy simulation","authors":"P. Baas, R. Verzijlbergh, Pim van Dorp, Harm J. J. Jonker","doi":"10.5194/wes-8-787-2023","DOIUrl":null,"url":null,"abstract":"Abstract. As a consequence of the rapid growth of the globally installed offshore wind energy capacity, the size of individual wind farms is increasing. This poses a challenge to models that predict energy production. For instance, the current generation of wake models has mostly been calibrated on existing wind farms of much smaller size. This work analyzes annual energy production and wake losses for future, multi-gigawatt wind farms with atmospheric large-eddy simulation. To that end, 1 year of actual weather has been simulated for a suite of hypothetical 4 GW offshore wind farm scenarios. The scenarios differ in terms of applied turbine type, installed capacity density, and layout. The results suggest that production numbers increase significantly when the rated power of the individual turbines is larger while keeping the total installed capacity the same. Even for turbine types with similar rated power but slightly different power curves, significant differences in production were found. Although wind speed was identified as the most dominant factor determining the aerodynamic losses, a clear impact of atmospheric stability and boundary layer height has been identified. By analyzing losses of the first-row turbines, the yearly average global-blockage effect is estimated to between 2 and 3 %, but it can reach levels over 10 % for stably stratified conditions and wind speeds around 8 m s−1. Using a high-fidelity modeling technique, the present work provides insights into the performance of future, multi-gigawatt wind farms for a full year of realistic weather conditions.\n","PeriodicalId":46540,"journal":{"name":"Wind Energy Science","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/wes-8-787-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract. As a consequence of the rapid growth of the globally installed offshore wind energy capacity, the size of individual wind farms is increasing. This poses a challenge to models that predict energy production. For instance, the current generation of wake models has mostly been calibrated on existing wind farms of much smaller size. This work analyzes annual energy production and wake losses for future, multi-gigawatt wind farms with atmospheric large-eddy simulation. To that end, 1 year of actual weather has been simulated for a suite of hypothetical 4 GW offshore wind farm scenarios. The scenarios differ in terms of applied turbine type, installed capacity density, and layout. The results suggest that production numbers increase significantly when the rated power of the individual turbines is larger while keeping the total installed capacity the same. Even for turbine types with similar rated power but slightly different power curves, significant differences in production were found. Although wind speed was identified as the most dominant factor determining the aerodynamic losses, a clear impact of atmospheric stability and boundary layer height has been identified. By analyzing losses of the first-row turbines, the yearly average global-blockage effect is estimated to between 2 and 3 %, but it can reach levels over 10 % for stably stratified conditions and wind speeds around 8 m s−1. Using a high-fidelity modeling technique, the present work provides insights into the performance of future, multi-gigawatt wind farms for a full year of realistic weather conditions.
利用大气大涡模拟研究数十亿瓦海上风电场的能量产生和尾流损失
摘要由于全球海上风能装机容量的快速增长,单个风电场的规模正在增加。这对预测能源生产的模型提出了挑战。例如,当前一代的尾流模型大多是在现有规模小得多的风电场上进行校准的。这项工作通过大气大涡模拟分析了未来数十亿瓦风电场的年发电量和尾流损失。为此,我们模拟了一组假设的4年实际天气 GW海上风电场场景。应用的涡轮机类型、装机容量密度和布局不同。结果表明,在保持总装机容量不变的情况下,当单个涡轮机的额定功率较大时,产量显著增加。即使对于额定功率相似但功率曲线略有不同的涡轮机类型,也发现产量存在显著差异。尽管风速被确定为决定空气动力学损失的最主要因素,但已经确定了大气稳定性和边界层高度的明显影响。通过分析第一排涡轮机的损失,估计年平均全球阻塞效应在2到3之间 %, 但它可以达到10以上的水平 % 对于稳定的分层条件和大约8的风速 m s−1。利用高保真建模技术,本工作深入了解了未来数十亿瓦风电场在全年真实天气条件下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wind Energy Science
Wind Energy Science GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
6.90
自引率
27.50%
发文量
115
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信