Numerical Solution of Shrödinger Equations Based on the Meshless Methods

IF 1 Q1 MATHEMATICS
M. Rahimi, S. Karbassi, M. R. Hooshmandasl
{"title":"Numerical Solution of Shrödinger Equations Based on the Meshless Methods","authors":"M. Rahimi, S. Karbassi, M. R. Hooshmandasl","doi":"10.46793/kgjmat2206.929r","DOIUrl":null,"url":null,"abstract":"In this work, two-dimensional time-dependent quantum equation problems are studied. We introduce a numerical algorithm for solving the two-dimensional nonlinear complex quantum system with MLS and FDM methods. An efficient and accurate computational algorithm based on both, the moving least squares (MLS) and the finite difference (FDM) methods is proposed for solving it. The results demonstrate that the proposed algorithm is a robust algorithm with good accuracy. This is developed on MLS and FDM methods using numerical simulation for solving these kind of problems.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2206.929r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, two-dimensional time-dependent quantum equation problems are studied. We introduce a numerical algorithm for solving the two-dimensional nonlinear complex quantum system with MLS and FDM methods. An efficient and accurate computational algorithm based on both, the moving least squares (MLS) and the finite difference (FDM) methods is proposed for solving it. The results demonstrate that the proposed algorithm is a robust algorithm with good accuracy. This is developed on MLS and FDM methods using numerical simulation for solving these kind of problems.
基于无网格法的Shrödinger方程数值解
本文研究了二维含时量子方程问题。我们介绍了一种用MLS和FDM方法求解二维非线性复量子系统的数值算法。基于移动最小二乘法(MLS)和有限差分法(FDM),提出了一种高效、准确的计算算法。结果表明,该算法是一种具有良好精度的鲁棒算法。这是在MLS和FDM方法的基础上发展起来的,使用数值模拟来解决这类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信