Experimental and semianalytical investigation of X850 ± IM190 CFRP bolted joints

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Boling He
{"title":"Experimental and semianalytical investigation of X850 ± IM190 CFRP bolted joints","authors":"Boling He","doi":"10.1177/0963693519895009","DOIUrl":null,"url":null,"abstract":"Considering the fact that the foundation data for a new X850 ± IM190 carbon/epoxy material system adopted in commercial aircraft industry are extremely scarce in the literature, an in-plane, static tensile experiment was carried out to investigate the bearing performance of double-lap, single-bolt joints in X850 ± IM190 carbon fiber-reinforced polymer (CFRP) composites. The effects of ply ratio, 0° layers’ combination percentage, bolt diameter, and curing method were considered. Then, special attention was paid to determine the design parameters of X850 ± IM190 CFRP bolted joints, such as tensile strength of un-notched laminate and stress concentration relief factor. Based on these design parameters, an efficient semianalytical approach was established to obtain the ultimate bearing strength of the joints. The failure prediction exhibited excellent agreement with the experimental data. These results will play an important role in design and strength evaluation of X850 ± IM190 CFRP bolted joints.","PeriodicalId":55551,"journal":{"name":"Advanced Composites Letters","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0963693519895009","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0963693519895009","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1

Abstract

Considering the fact that the foundation data for a new X850 ± IM190 carbon/epoxy material system adopted in commercial aircraft industry are extremely scarce in the literature, an in-plane, static tensile experiment was carried out to investigate the bearing performance of double-lap, single-bolt joints in X850 ± IM190 carbon fiber-reinforced polymer (CFRP) composites. The effects of ply ratio, 0° layers’ combination percentage, bolt diameter, and curing method were considered. Then, special attention was paid to determine the design parameters of X850 ± IM190 CFRP bolted joints, such as tensile strength of un-notched laminate and stress concentration relief factor. Based on these design parameters, an efficient semianalytical approach was established to obtain the ultimate bearing strength of the joints. The failure prediction exhibited excellent agreement with the experimental data. These results will play an important role in design and strength evaluation of X850 ± IM190 CFRP bolted joints.
X850±IM190 CFRP螺栓连接试验与半分析研究
考虑到商用飞机工业中采用的新型X850±IM190碳/环氧材料体系的基础数据在文献中极为稀少,本文进行了平面内静态拉伸实验,研究了X850±IM 190碳纤维增强聚合物(CFRP)复合材料中双搭接单螺栓接头的承载性能。考虑了铺层率、0°层组合率、螺栓直径和养护方法的影响。然后,重点确定了X850±IM190 CFRP螺栓连接的设计参数,如无缺口层压板的抗拉强度和应力集中释放因子。基于这些设计参数,建立了一种有效的半分析方法来获得节点的极限承载强度。失效预测与实验数据吻合良好。这些结果将对X850±IM190 CFRP螺栓连接的设计和强度评估起到重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Composites Letters
Advanced Composites Letters 工程技术-材料科学:复合
自引率
0.00%
发文量
0
审稿时长
4.2 months
期刊介绍: Advanced Composites Letters is a peer reviewed, open access journal publishing research which focuses on the field of science and engineering of advanced composite materials or structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信