{"title":"Weak precompactness in projective tensor products","authors":"José Rodríguez , Abraham Rueda Zoca","doi":"10.1016/j.indag.2023.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>We give a sufficient condition for a pair of Banach spaces <span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></mrow></math></span> to have the following property: whenever <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊆</mo><mi>X</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mi>Y</mi></mrow></math></span> are sets such that <span><math><mrow><mo>{</mo><mi>x</mi><mo>⊗</mo><mi>y</mi><mo>:</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><mi>y</mi><mo>∈</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></mrow></math></span> is weakly precompact in the projective tensor product <span><math><mrow><mi>X</mi><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>̂</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>Y</mi></mrow></math></span>, then either <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is relatively norm compact. For instance, such a property holds for the pair <span><math><mrow><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow></math></span> if <span><math><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo><</mo><mi>∞</mi></mrow></math></span> satisfy <span><math><mrow><mn>1</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>/</mo><mi>q</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. Other examples are given that allow us to provide alternative proofs to some results on multiplication operators due to Saksman and Tylli. We also revisit, with more direct proofs, some known results about the embeddability of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> into <span><math><mrow><mi>X</mi><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>̂</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>Y</mi></mrow></math></span> for arbitrary Banach spaces <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span>, in connection with the compactness of all operators from <span><math><mi>X</mi></math></span> to <span><math><msup><mrow><mi>Y</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 1","pages":"Pages 60-75"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723000800/pdfft?md5=532c4016f038e9c133d3e9e7b6f3142c&pid=1-s2.0-S0019357723000800-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000800","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We give a sufficient condition for a pair of Banach spaces to have the following property: whenever and are sets such that is weakly precompact in the projective tensor product , then either or is relatively norm compact. For instance, such a property holds for the pair if satisfy . Other examples are given that allow us to provide alternative proofs to some results on multiplication operators due to Saksman and Tylli. We also revisit, with more direct proofs, some known results about the embeddability of into for arbitrary Banach spaces and , in connection with the compactness of all operators from to .
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.