Joint Neural Denoising of Surfaces and Volumes

IF 2.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Nikolai Hofmann, J. Hasselgren, Jacob Munkberg
{"title":"Joint Neural Denoising of Surfaces and Volumes","authors":"Nikolai Hofmann, J. Hasselgren, Jacob Munkberg","doi":"10.1145/3585497","DOIUrl":null,"url":null,"abstract":"Denoisers designed for surface geometry rely on noise-free feature guides for high quality results. However, these guides are not readily available for volumes. Our method enables combined volume and surface denoising in real time from low sample count (4 spp) renderings. The rendered image is decomposed into volume and surface layers, leveraging spatio-temporal neural denoisers for both components. The individual signals are composited using learned weights and denoised transmittance. Our architecture outperforms current denoisers in scenes containing both surfaces and volumes, and produces temporally stable results at interactive rates.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":" ","pages":"1 - 16"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3585497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Denoisers designed for surface geometry rely on noise-free feature guides for high quality results. However, these guides are not readily available for volumes. Our method enables combined volume and surface denoising in real time from low sample count (4 spp) renderings. The rendered image is decomposed into volume and surface layers, leveraging spatio-temporal neural denoisers for both components. The individual signals are composited using learned weights and denoised transmittance. Our architecture outperforms current denoisers in scenes containing both surfaces and volumes, and produces temporally stable results at interactive rates.
表面和体积的联合神经去噪
为表面几何形状设计的去噪器依赖于无噪声的特征导向,以获得高质量的结果。但是,这些指南并不适用于卷。我们的方法能够从低样本数(4 spp)渲染中实时组合体积和表面去噪。渲染图像被分解为体积层和表面层,利用时空神经去噪器对这两个分量进行去噪。使用学习的权重和去噪的透射率来合成各个信号。我们的架构在包含曲面和体积的场景中优于当前的去噪器,并在交互速率下产生时间稳定的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信