Dissipative generation of significant amount of photon-phonon asymmetric steering in magnomechanical interfaces

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Tian-Ang Zheng, Ye Zheng, Lei Wang, Chang-Geng Liao
{"title":"Dissipative generation of significant amount of photon-phonon asymmetric steering in magnomechanical interfaces","authors":"Tian-Ang Zheng,&nbsp;Ye Zheng,&nbsp;Lei Wang,&nbsp;Chang-Geng Liao","doi":"10.1140/epjqt/s40507-023-00177-y","DOIUrl":null,"url":null,"abstract":"<div><p>A theoretical scheme is proposed to generate significant amount of photon-phonon entanglement and asymmetric steering in a cavity magnomechanical system, which is constituted by trapping a yttrium iron garnet sphere in a microwave cavity. By applying a blue-detuned microwave driving field, we obtain an effective Hamiltonian where the magnon mode acting as an engineered resevoir cools the Bogoliubov modes of microwave cavity mode and mechanical mode via a beam-splitter-like interaction. By this means, the microwave cavity mode and mechanical mode can be driven to a two-mode squeezed state in the stationary limit. Particularly, strong two-way and one-way photon-phonon asymmetric quantum steering can be obtained with even equal dissipation. It is widely divergent with the conventional proposal, where additional unbalanced losses or noises should be imposed on the two subsystems. Our finding may be significant to expand our understanding of the essential physics of asymmetric steering and extend the potential application of the cavity spintronics to device-independent quantum key distribution.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00177-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00177-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A theoretical scheme is proposed to generate significant amount of photon-phonon entanglement and asymmetric steering in a cavity magnomechanical system, which is constituted by trapping a yttrium iron garnet sphere in a microwave cavity. By applying a blue-detuned microwave driving field, we obtain an effective Hamiltonian where the magnon mode acting as an engineered resevoir cools the Bogoliubov modes of microwave cavity mode and mechanical mode via a beam-splitter-like interaction. By this means, the microwave cavity mode and mechanical mode can be driven to a two-mode squeezed state in the stationary limit. Particularly, strong two-way and one-way photon-phonon asymmetric quantum steering can be obtained with even equal dissipation. It is widely divergent with the conventional proposal, where additional unbalanced losses or noises should be imposed on the two subsystems. Our finding may be significant to expand our understanding of the essential physics of asymmetric steering and extend the potential application of the cavity spintronics to device-independent quantum key distribution.

磁力学界面中大量光子-声子不对称转向的耗散产生
提出了一种在微波腔中捕获钇铁石榴石球体构成的腔磁力系统中产生大量光子-声子纠缠和不对称转向的理论方案。通过应用一个蓝色失谐微波驱动场,我们获得了一个有效的哈密顿量,其中磁振子模式作为一个工程水库,通过类似分束器的相互作用冷却微波腔模式和机械模式的Bogoliubov模式。通过这种方法,可以将微波腔模和机械模在固定极限下驱动到双模压缩状态。特别是在耗散均匀的情况下,可以获得强的双向和单向光子-声子不对称量子导向。它与传统的建议有很大的不同,传统的建议是在两个子系统上施加额外的不平衡损失或噪声。我们的发现可能对扩展我们对不对称转向基本物理的理解和扩展腔自旋电子学在器件无关量子密钥分配方面的潜在应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信