Transverse Kähler holonomy in Sasaki Geometry and S-Stability

IF 0.5 Q3 MATHEMATICS
C. Boyer, Hongnian Huang, Christina W. Tønnesen-Friedman
{"title":"Transverse Kähler holonomy in Sasaki Geometry and S-Stability","authors":"C. Boyer, Hongnian Huang, Christina W. Tønnesen-Friedman","doi":"10.1515/coma-2020-0123","DOIUrl":null,"url":null,"abstract":"Abstract We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b1(M) and the basic Hodge number h0,2B(S) vanish, then S is stable under deformations of the transverse Kähler flow. In addition we show that an irreducible transverse hyperkähler Sasakian structure is S-unstable, whereas, an irreducible transverse Calabi-Yau Sasakian structure is S-stable when dim M ≥ 7. Finally, we prove that the standard Sasaki join operation (transverse holonomy U(n1) × U(n2)) as well as the fiber join operation preserve S-stability.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"8 1","pages":"336 - 353"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2020-0123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b1(M) and the basic Hodge number h0,2B(S) vanish, then S is stable under deformations of the transverse Kähler flow. In addition we show that an irreducible transverse hyperkähler Sasakian structure is S-unstable, whereas, an irreducible transverse Calabi-Yau Sasakian structure is S-stable when dim M ≥ 7. Finally, we prove that the standard Sasaki join operation (transverse holonomy U(n1) × U(n2)) as well as the fiber join operation preserve S-stability.
Sasaki几何中的横向Kähler完整度和s稳定性
研究了Sasaki流形(M, S)上的横向Kähler完整群及其在Reeb向量场的特征叶理的横向全纯变形下的稳定性。特别地,我们证明了当第一Betti数b1(M)和基本Hodge数h0,2B(S)消失时,S在横向Kähler流变形下是稳定的。此外,我们还证明了不可约的横向hyperkähler Sasakian结构是s -不稳定的,而当dim M≥7时,不可约的横向Calabi-Yau Sasakian结构是s -稳定的。最后,我们证明了标准Sasaki连接操作(横向完整度U(n1) × U(n2))和光纤连接操作保持s稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信