Non-isogenous elliptic curves and hyperelliptic jacobians

Pub Date : 2021-05-08 DOI:10.4310/mrl.2023.v30.n1.a11
Y. Zarhin
{"title":"Non-isogenous elliptic curves and hyperelliptic jacobians","authors":"Y. Zarhin","doi":"10.4310/mrl.2023.v30.n1.a11","DOIUrl":null,"url":null,"abstract":"Let $K$ be a field of characteristic different from $2$, $\\bar{K}$ its algebraic closure. Let $n \\ge 3$ be an odd prime such that $2$ is a primitive root modulo $n$. Let $f(x)$ and $h(x)$ be degree $n$ polynomials with coefficients in $K$ and without repeated roots. Let us consider genus $(n-1)/2$ hyperelliptic curves $C_f: y^2=f(x)$ and $C_h: y^2=h(x)$, and their jacobians $J(C_f)$ and $J(C_h)$, which are $(n-1)/2$-dimensional abelian varieties defined over $K$. Suppose that one of the polynomials is irreducible and the other reducible. We prove that if $J(C_f)$ and $J(C_h)$ are isogenous over $\\bar{K}$ then both jacobians are abelian varieties of CM type with multiplication by the field of $n$th roots of $1$. We also discuss the case when both polynomials are irreducible while their splitting fields are linearly disjoint. In particular, we prove that if $char(K)=0$, the Galois group of one of the polynomials is doubly transitive and the Galois group of the other is a cyclic group of order $n$, then $J(C_f)$ and $J(C_h)$ are not isogenous over $\\bar{K}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n1.a11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Let $K$ be a field of characteristic different from $2$, $\bar{K}$ its algebraic closure. Let $n \ge 3$ be an odd prime such that $2$ is a primitive root modulo $n$. Let $f(x)$ and $h(x)$ be degree $n$ polynomials with coefficients in $K$ and without repeated roots. Let us consider genus $(n-1)/2$ hyperelliptic curves $C_f: y^2=f(x)$ and $C_h: y^2=h(x)$, and their jacobians $J(C_f)$ and $J(C_h)$, which are $(n-1)/2$-dimensional abelian varieties defined over $K$. Suppose that one of the polynomials is irreducible and the other reducible. We prove that if $J(C_f)$ and $J(C_h)$ are isogenous over $\bar{K}$ then both jacobians are abelian varieties of CM type with multiplication by the field of $n$th roots of $1$. We also discuss the case when both polynomials are irreducible while their splitting fields are linearly disjoint. In particular, we prove that if $char(K)=0$, the Galois group of one of the polynomials is doubly transitive and the Galois group of the other is a cyclic group of order $n$, then $J(C_f)$ and $J(C_h)$ are not isogenous over $\bar{K}$.
分享
查看原文
非等均椭圆曲线与超椭圆雅可比矩阵
设$K$是一个不同于$2$的特征域,$\bar{K}$是它的代数闭包。设$n\ge3$是奇素数,使得$2$是模$n$的基根。设$f(x)$和$h(x)美元是系数为$K$且没有重复根的次$n$多项式。让我们考虑亏格$(n-1)/2$超椭圆曲线$C_f:y^2=f(x)$和$C_h:y^2=h。假设其中一个多项式是不可约的,另一个是可约的。我们证明了如果$J(C_f)$和$J(C_h)$在$\bar{K}$上是同构的,那么两个jacobian都是CM型的阿贝尔变种,并且与$1$的$n$根的域相乘。我们还讨论了当两个多项式都是不可约的,而它们的分裂域是线性不相交的情况。特别地,我们证明了如果$char(K)=0$,其中一个多项式的Galois群是双传递的,而另一个多项式是$n$阶的循环群,那么$J(C_f)$和$J(C_h)$在$\bar{K}$上不是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信