{"title":"On some classes of \\({\\mathbb {Z}}\\)-graded Lie algebras","authors":"Stefano Marini, Costantino Medori, Mauro Nacinovich","doi":"10.1007/s12188-020-00217-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study finite dimensional <i>almost</i>- and <i>quasi-effective</i> prolongations of nilpotent <span>\\({\\mathbb {Z}}\\)</span>-graded Lie algebras, especially focusing on those having a decomposable reductive structural subalgebra. Our assumptions generalize <i>effectiveness</i> and <i>algebraicity</i> and are appropriate to obtain Levi–Malčev and Levi–Chevalley decompositions and precisions on the heigth and other properties of the prolongations in a very natural way. In a last section we consider the semisimple case and discuss some examples in which the structural algebras are central extensions of orthogonal Lie algebras and their degree <span>\\((-\\,1)\\)</span> components arise from spin representations.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-020-00217-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-020-00217-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study finite dimensional almost- and quasi-effective prolongations of nilpotent \({\mathbb {Z}}\)-graded Lie algebras, especially focusing on those having a decomposable reductive structural subalgebra. Our assumptions generalize effectiveness and algebraicity and are appropriate to obtain Levi–Malčev and Levi–Chevalley decompositions and precisions on the heigth and other properties of the prolongations in a very natural way. In a last section we consider the semisimple case and discuss some examples in which the structural algebras are central extensions of orthogonal Lie algebras and their degree \((-\,1)\) components arise from spin representations.
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.