On some classes of \({\mathbb {Z}}\)-graded Lie algebras

IF 0.4 4区 数学 Q4 MATHEMATICS
Stefano Marini, Costantino Medori, Mauro Nacinovich
{"title":"On some classes of \\({\\mathbb {Z}}\\)-graded Lie algebras","authors":"Stefano Marini,&nbsp;Costantino Medori,&nbsp;Mauro Nacinovich","doi":"10.1007/s12188-020-00217-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study finite dimensional <i>almost</i>- and <i>quasi-effective</i> prolongations of nilpotent <span>\\({\\mathbb {Z}}\\)</span>-graded Lie algebras, especially focusing on those having a decomposable reductive structural subalgebra. Our assumptions generalize <i>effectiveness</i> and <i>algebraicity</i> and are appropriate to obtain Levi–Malčev and Levi–Chevalley decompositions and precisions on the heigth and other properties of the prolongations in a very natural way. In a last section we consider the semisimple case and discuss some examples in which the structural algebras are central extensions of orthogonal Lie algebras and their degree <span>\\((-\\,1)\\)</span> components arise from spin representations.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-020-00217-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-020-00217-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study finite dimensional almost- and quasi-effective prolongations of nilpotent \({\mathbb {Z}}\)-graded Lie algebras, especially focusing on those having a decomposable reductive structural subalgebra. Our assumptions generalize effectiveness and algebraicity and are appropriate to obtain Levi–Malčev and Levi–Chevalley decompositions and precisions on the heigth and other properties of the prolongations in a very natural way. In a last section we consider the semisimple case and discuss some examples in which the structural algebras are central extensions of orthogonal Lie algebras and their degree \((-\,1)\) components arise from spin representations.

关于$${\mathbb{Z}}$$分次李代数的一些类
研究了幂零\({\mathbb {Z}}\) -梯度李代数的有限维几乎有效和拟有效延拓,特别关注那些具有可分解的还原性结构子代数的李代数。我们的假设推广了有效性和代数性,适用于以非常自然的方式获得关于延伸的高度和其他性质的列维-马尔夫和列维-切瓦莱分解和精度。在最后一节中,我们考虑了半简单的情况,并讨论了一些例子,其中结构代数是正交李代数的中心扩展,它们的度\((-\,1)\)分量来自自旋表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信