Valentin Gallican, Miroslav Zecevic, Ricardo A. Lebensohn, Martín I. Idiart
{"title":"The Elastic Properties of Dilute Solid Suspensions with Imperfect Interfacial Bonding: Variational Approximations Versus Full-Field Simulations","authors":"Valentin Gallican, Miroslav Zecevic, Ricardo A. Lebensohn, Martín I. Idiart","doi":"10.1007/s10659-023-10001-4","DOIUrl":null,"url":null,"abstract":"<div><p>Approximations for the elastic properties of dilute solid suspensions with imperfect interfacial bonding are derived and assessed. A variational procedure is employed in such a way that the resulting approximations reproduce exact results for weakly anisotropic but otherwise arbitrarily large interfacial compliances. Two approximations are generated which display the exact same format but differ in the way the interfacial compliance is averaged over the interfaces: the first approximation depends on an ‘arithmetic’ mean while the second approximation depends on a ‘harmonic’ mean. Both approximations allow for arbitrary elastic anisotropy of the constitutive phases but are restricted to suspended inclusions of spherical shape. The approximations are applied to a class of isotropic suspensions and confronted to full-field numerical simulations for assessment. Simulations are performed by means of a Fast Fourier Transform algorithm suitably implemented to handle dilute suspensions with imperfect interfaces. Also included in the comparisons are available results for suspensions with extremely anisotropic bondings. Overall, the ‘harmonic’ approximation is found to be much more precise than the ‘arithmetic’ approximation. The finding is of practical relevance given the widespread use of ‘arithmetic’ approximations in existing descriptions based on modified Eshelby tensors.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"153 3","pages":"373 - 398"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-023-10001-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Approximations for the elastic properties of dilute solid suspensions with imperfect interfacial bonding are derived and assessed. A variational procedure is employed in such a way that the resulting approximations reproduce exact results for weakly anisotropic but otherwise arbitrarily large interfacial compliances. Two approximations are generated which display the exact same format but differ in the way the interfacial compliance is averaged over the interfaces: the first approximation depends on an ‘arithmetic’ mean while the second approximation depends on a ‘harmonic’ mean. Both approximations allow for arbitrary elastic anisotropy of the constitutive phases but are restricted to suspended inclusions of spherical shape. The approximations are applied to a class of isotropic suspensions and confronted to full-field numerical simulations for assessment. Simulations are performed by means of a Fast Fourier Transform algorithm suitably implemented to handle dilute suspensions with imperfect interfaces. Also included in the comparisons are available results for suspensions with extremely anisotropic bondings. Overall, the ‘harmonic’ approximation is found to be much more precise than the ‘arithmetic’ approximation. The finding is of practical relevance given the widespread use of ‘arithmetic’ approximations in existing descriptions based on modified Eshelby tensors.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.