Construction of counterexamples to the 2–jet determination Chern–Moser Theorem in higher codimension

Pub Date : 2020-10-20 DOI:10.4310/mrl.2022.v29.n2.a4
Jan Gregorovivc, F. Meylan
{"title":"Construction of counterexamples to the 2–jet determination Chern–Moser Theorem in higher codimension","authors":"Jan Gregorovivc, F. Meylan","doi":"10.4310/mrl.2022.v29.n2.a4","DOIUrl":null,"url":null,"abstract":"We first construct a counterexample of a generic quadratic submanifold of codimension $5$ in $\\Bbb C^9$ which admits a real analytic infinitesimal CR automorphism with homogeneous polynomial coefficients of degree $4.$ This example also resolves a question in the Tanaka prolongation theory that was open for more than 50 years. \nThen we give sufficient conditions to generate more counterexamples to the $2-$jet determination Chern-Moser Theorem in higher codimension. In particular, we construct examples of generic quadratic submanifolds with jet determination of arbitrarily high order.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n2.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We first construct a counterexample of a generic quadratic submanifold of codimension $5$ in $\Bbb C^9$ which admits a real analytic infinitesimal CR automorphism with homogeneous polynomial coefficients of degree $4.$ This example also resolves a question in the Tanaka prolongation theory that was open for more than 50 years. Then we give sufficient conditions to generate more counterexamples to the $2-$jet determination Chern-Moser Theorem in higher codimension. In particular, we construct examples of generic quadratic submanifolds with jet determination of arbitrarily high order.
分享
查看原文
高余维双射流确定陈-莫泽定理反例的构造
我们首先在$\Bbb C^9$中构造了一个余维数为$5$的一般二次子流形的反例,它允许一个具有4次齐次多项式系数的实解析无穷小CR自同构。这个例子还解决了Tanaka延拓理论中一个开放了50多年的问题。然后,我们给出了在较高余维上生成更多反例的充分条件,以证明$2-$jet判定Chern-Moser定理。特别地,我们构造了具有任意高阶喷射判定的一般二次子流形的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信