Construction of counterexamples to the 2–jet determination Chern–Moser Theorem in higher codimension

IF 0.6 3区 数学 Q3 MATHEMATICS
Jan Gregorovivc, F. Meylan
{"title":"Construction of counterexamples to the 2–jet determination Chern–Moser Theorem in higher codimension","authors":"Jan Gregorovivc, F. Meylan","doi":"10.4310/mrl.2022.v29.n2.a4","DOIUrl":null,"url":null,"abstract":"We first construct a counterexample of a generic quadratic submanifold of codimension $5$ in $\\Bbb C^9$ which admits a real analytic infinitesimal CR automorphism with homogeneous polynomial coefficients of degree $4.$ This example also resolves a question in the Tanaka prolongation theory that was open for more than 50 years. \nThen we give sufficient conditions to generate more counterexamples to the $2-$jet determination Chern-Moser Theorem in higher codimension. In particular, we construct examples of generic quadratic submanifolds with jet determination of arbitrarily high order.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n2.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We first construct a counterexample of a generic quadratic submanifold of codimension $5$ in $\Bbb C^9$ which admits a real analytic infinitesimal CR automorphism with homogeneous polynomial coefficients of degree $4.$ This example also resolves a question in the Tanaka prolongation theory that was open for more than 50 years. Then we give sufficient conditions to generate more counterexamples to the $2-$jet determination Chern-Moser Theorem in higher codimension. In particular, we construct examples of generic quadratic submanifolds with jet determination of arbitrarily high order.
高余维双射流确定陈-莫泽定理反例的构造
我们首先在$\Bbb C^9$中构造了一个余维数为$5$的一般二次子流形的反例,它允许一个具有4次齐次多项式系数的实解析无穷小CR自同构。这个例子还解决了Tanaka延拓理论中一个开放了50多年的问题。然后,我们给出了在较高余维上生成更多反例的充分条件,以证明$2-$jet判定Chern-Moser定理。特别地,我们构造了具有任意高阶喷射判定的一般二次子流形的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信