Stabilization for the Klein–Gordon–Zakharov system

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Weijia Li, Yuqi Shangguan, Weiping Yan
{"title":"Stabilization for the Klein–Gordon–Zakharov system","authors":"Weijia Li, Yuqi Shangguan, Weiping Yan","doi":"10.3233/asy-231856","DOIUrl":null,"url":null,"abstract":"This paper deals with global stability dynamics for the Klein–Gordon–Zakharov system in R 2 . We first establish that this system admits a family of linear mode unstable explicit quasi-periodic wave solutions. Next, we prove that the Kelvin–Voigt damping can help to stabilize those linear mode unstable explicit quasi-periodic wave solutions for the Klein–Gordon–Zakharov system in the Sobolev space H s + 1 ( R 2 ) × H s + 1 ( R 2 ) × H s + 1 ( R 2 ) for any s ⩾ 1. Moreover, the Kelvin–Voigt damped Klein–Gordon–Zakharov system admits a unique Sobolev regular solution exponentially convergent to some special solutions (including quasi-periodic wave solutions) of it. Our result can be extended to the n-dimension dissipative Klein–Gordon–Zakharov system for any n ⩾ 1.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231856","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with global stability dynamics for the Klein–Gordon–Zakharov system in R 2 . We first establish that this system admits a family of linear mode unstable explicit quasi-periodic wave solutions. Next, we prove that the Kelvin–Voigt damping can help to stabilize those linear mode unstable explicit quasi-periodic wave solutions for the Klein–Gordon–Zakharov system in the Sobolev space H s + 1 ( R 2 ) × H s + 1 ( R 2 ) × H s + 1 ( R 2 ) for any s ⩾ 1. Moreover, the Kelvin–Voigt damped Klein–Gordon–Zakharov system admits a unique Sobolev regular solution exponentially convergent to some special solutions (including quasi-periodic wave solutions) of it. Our result can be extended to the n-dimension dissipative Klein–Gordon–Zakharov system for any n ⩾ 1.
Klein-Gordon-Zakharov系统的稳定
本文研究r2中Klein-Gordon-Zakharov系统的全局稳定性动力学问题。首先证明了该系统存在一类线性模态不稳定的显式拟周期波解。接下来,我们证明Kelvin-Voigt阻尼可以帮助稳定Sobolev空间H s + 1 (r2) × H s + 1 (r2) × H s + 1 (r2)中的Klein-Gordon-Zakharov系统的那些线性模式不稳定的显式准周期波解对于任何s大于或等于1。此外,Kelvin-Voigt阻尼Klein-Gordon-Zakharov系统允许一个唯一的Sobolev正则解指数收敛于它的一些特解(包括拟周期波解)。我们的结果可以扩展到任何n小于1的n维耗散Klein-Gordon-Zakharov系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信