Resonance of Nanoscale Beam due to Various Sources in Modified Couple Stress Thermoelastic Diffusion with Phase Lags

Q3 Engineering
Rajneesh Kumar, S. Devi, Veena Sharma
{"title":"Resonance of Nanoscale Beam due to Various Sources in Modified Couple Stress Thermoelastic Diffusion with Phase Lags","authors":"Rajneesh Kumar, S. Devi, Veena Sharma","doi":"10.2478/mme-2019-0006","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with the study of thermoelastic thin beam in a modified couple stress with three-phase-lag thermoelastic diffusion model subjected to thermal and chemical potential sources. The governing equations are derived by using the Euler-Bernoulli beam assumption and eigenvalue approach. The Laplace transform technique is employed to obtain the expressions for displacements, lateral deflection, temperature change, axial stress and chemical potential. A particular type of instantaneous and distributed sources is taken to show the utility of the approach. The general algorithm of the inverse Laplace transform is developed to compute the results numerically. The numerical results are depicted graphically to show the effects of phase lags, with and without energy dissipation on the resulting quantities. Some special cases are given.","PeriodicalId":53557,"journal":{"name":"Mechanics and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mme-2019-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract This paper deals with the study of thermoelastic thin beam in a modified couple stress with three-phase-lag thermoelastic diffusion model subjected to thermal and chemical potential sources. The governing equations are derived by using the Euler-Bernoulli beam assumption and eigenvalue approach. The Laplace transform technique is employed to obtain the expressions for displacements, lateral deflection, temperature change, axial stress and chemical potential. A particular type of instantaneous and distributed sources is taken to show the utility of the approach. The general algorithm of the inverse Laplace transform is developed to compute the results numerically. The numerical results are depicted graphically to show the effects of phase lags, with and without energy dissipation on the resulting quantities. Some special cases are given.
具有相位滞后的修正耦合应力热弹性扩散中不同源纳米光束的共振
摘要本文研究了在热、化学势源作用下,具有三相滞后热弹性扩散模型的修正耦合应力下的热弹性薄梁。利用欧拉-伯努利梁假设和特征值法推导了控制方程。采用拉普拉斯变换技术,得到了位移、横向挠度、温度变化、轴向应力和化学势的表达式。采用一种特定类型的瞬时和分布式源来展示该方法的实用性。为了对结果进行数值计算,提出了拉普拉斯逆变换的通用算法。数值结果用图形表示,以显示相位滞后、有无能量耗散对结果量的影响。给出了一些特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics and Mechanical Engineering
Mechanics and Mechanical Engineering Engineering-Automotive Engineering
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信