KNOWM memristors in a bridge synapse delay-based reservoir computing system for detection of epileptic seizures

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Dawid Przyczyna, Grzegorz Hess, K. Szaciłowski
{"title":"KNOWM memristors in a bridge synapse delay-based reservoir computing system for detection of epileptic seizures","authors":"Dawid Przyczyna, Grzegorz Hess, K. Szaciłowski","doi":"10.1080/17445760.2022.2088751","DOIUrl":null,"url":null,"abstract":"ABSTRACT Nanodevices that show the potential for non-linear transformation of electrical signals and various forms of memory can be successfully used in new computational paradigms, such as neuromorphic or reservoir computing. In this work, we present single-node Echo State Machine (SNESM) RC system based on bridge synapse as a computational substrate (consisting of 4 memristors and a differential amplifier) used for epileptic seizure detection. The results show that the evolution of the signal in a feedback loop helps improve the classification accuracy of the system for that task. The transformation in SNESM changes the correlation and distribution of the complexity parameters of the input signal. In general, there are more differences in the correlation of complexity parameters between the transformed signal and the input signal, which may explain the improvement in the classification scores. SNESM could prove to be a useful time series signal processing system designed to improve accuracy in classification tasks.","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2022.2088751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 6

Abstract

ABSTRACT Nanodevices that show the potential for non-linear transformation of electrical signals and various forms of memory can be successfully used in new computational paradigms, such as neuromorphic or reservoir computing. In this work, we present single-node Echo State Machine (SNESM) RC system based on bridge synapse as a computational substrate (consisting of 4 memristors and a differential amplifier) used for epileptic seizure detection. The results show that the evolution of the signal in a feedback loop helps improve the classification accuracy of the system for that task. The transformation in SNESM changes the correlation and distribution of the complexity parameters of the input signal. In general, there are more differences in the correlation of complexity parameters between the transformed signal and the input signal, which may explain the improvement in the classification scores. SNESM could prove to be a useful time series signal processing system designed to improve accuracy in classification tasks.
用于检测癫痫发作的桥式突触延迟库计算系统中的KNOWM忆阻器
摘要显示出对电信号和各种形式的记忆进行非线性转换潜力的纳米设备可以成功地用于新的计算范式,如神经形态或储层计算。在这项工作中,我们提出了一种基于桥突触的单节点回声状态机(SNESM)RC系统,作为用于癫痫发作检测的计算基底(由4个忆阻器和一个差分放大器组成)。结果表明,反馈回路中信号的演化有助于提高系统对该任务的分类精度。SNESM中的变换改变了输入信号的复杂度参数的相关性和分布。通常,变换信号和输入信号之间的复杂度参数的相关性存在更多差异,这可以解释分类得分的提高。SNESM可能被证明是一种有用的时间序列信号处理系统,旨在提高分类任务的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信