Mixture of shifted binomial distributions for rating data

Pub Date : 2023-02-10 DOI:10.1007/s10463-023-00865-7
Shaoting Li, Jiahua Chen
{"title":"Mixture of shifted binomial distributions for rating data","authors":"Shaoting Li,&nbsp;Jiahua Chen","doi":"10.1007/s10463-023-00865-7","DOIUrl":null,"url":null,"abstract":"<div><p>Rating data are a kind of ordinal categorical data routinely collected in survey sampling. The response value in such applications is confined to a finite number of ordered categories. Due to population heterogeneity, the respondents may have several different rating styles. A finite mixture model is thus most suitable to fit datasets of this nature. In this paper, we propose a two-component mixture of shifted binomial distributions for rating data. We show that this model is identifiable and propose a numerically stable penalized likelihood approach for parameter estimation. We adapt an expectation-maximization algorithm for the penalized maximum likelihood estimation. Our simulation results show that the penalized maximum likelihood estimator is consistent and effective. We fit the proposed model and other models in the literature to some real-world datasets and find the proposed model can have much better fits.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-023-00865-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rating data are a kind of ordinal categorical data routinely collected in survey sampling. The response value in such applications is confined to a finite number of ordered categories. Due to population heterogeneity, the respondents may have several different rating styles. A finite mixture model is thus most suitable to fit datasets of this nature. In this paper, we propose a two-component mixture of shifted binomial distributions for rating data. We show that this model is identifiable and propose a numerically stable penalized likelihood approach for parameter estimation. We adapt an expectation-maximization algorithm for the penalized maximum likelihood estimation. Our simulation results show that the penalized maximum likelihood estimator is consistent and effective. We fit the proposed model and other models in the literature to some real-world datasets and find the proposed model can have much better fits.

Abstract Image

分享
查看原文
混合移位二项分布的评级数据
评级数据是在调查抽样中常规收集的一种有序分类数据。在这种应用中,响应值被限制在有限数量的有序类别中。由于人口异质性,受访者可能有几种不同的评级风格。因此,有限混合模型最适合拟合这种性质的数据集。在本文中,我们提出了一个双分量混合移位二项分布的评级数据。我们证明了该模型是可识别的,并提出了一种数值稳定的惩罚似然方法用于参数估计。我们采用了一种期望最大化算法来进行惩罚极大似然估计。仿真结果表明,惩罚极大似然估计是一致的、有效的。我们将提出的模型和文献中的其他模型拟合到一些现实世界的数据集,发现提出的模型可以有更好的拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信