On free subgroups of finite exponent in circle groups of free nilpotent algebras

IF 0.7 Q2 MATHEMATICS
Juliane Hansmann
{"title":"On free subgroups of finite exponent in circle groups of free nilpotent algebras","authors":"Juliane Hansmann","doi":"10.22108/IJGT.2017.108014.1455","DOIUrl":null,"url":null,"abstract":"‎Let $K$ be a commutative ring with identity and $N$ the free nilpotent $K$-algebra on a non-empty set $X$‎. ‎Then $N$ is a group with respect to the circle composition‎. ‎We prove that the subgroup generated by $X$ is relatively free in a suitable class of groups‎, ‎depending on the choice of $K$‎. ‎Moreover‎, ‎we get unique representations of the elements in terms of basic commutators‎. ‎In particular‎, ‎if $K$ is of characteristic $0$ the subgroup generated by $X$ is freely generated by $X$ as a nilpotent group‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2017.108014.1455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

‎Let $K$ be a commutative ring with identity and $N$ the free nilpotent $K$-algebra on a non-empty set $X$‎. ‎Then $N$ is a group with respect to the circle composition‎. ‎We prove that the subgroup generated by $X$ is relatively free in a suitable class of groups‎, ‎depending on the choice of $K$‎. ‎Moreover‎, ‎we get unique representations of the elements in terms of basic commutators‎. ‎In particular‎, ‎if $K$ is of characteristic $0$ the subgroup generated by $X$ is freely generated by $X$ as a nilpotent group‎.
关于自由幂零代数圆群中有限指数的自由子群
‎设$K$是具有恒等式的交换环,$N$是非空集$X上的自由幂零$K$代数$‎. ‎那么$N$是一个关于圆组成的群‎. ‎我们证明了$X$生成的子群在一类合适的群中是相对自由的‎, ‎取决于$K的选择$‎. ‎此外‎, ‎我们得到元素在基本交换子方面的唯一表示‎. ‎特别是‎, ‎如果$K$具有特征$0$,则$X$生成的子群由$X$自由生成为幂零群‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信