Study on synthesis and photoelectric properties of AgInS2 quantum dots

IF 0.7 4区 工程技术 Q4 CHEMISTRY, APPLIED
Binxia Yuan, Zige Luo, Yongjun Sun, Sheng Cao, L. Cao, Min Li
{"title":"Study on synthesis and photoelectric properties of AgInS2 quantum dots","authors":"Binxia Yuan, Zige Luo, Yongjun Sun, Sheng Cao, L. Cao, Min Li","doi":"10.2478/pjct-2022-0010","DOIUrl":null,"url":null,"abstract":"Abstract AgInS2 Quantum dots (AIS QDs) have high quantum yield and catalytic performance, which is promising materials in photo-catalytic and optoelectronic fields. In the paper, it adopted a simple and non-toxic method to synthesize AIS QDs. The effect of reaction temperature on the growth mechanism, optical and physical properties of AIS had been extensively investigated by using L-cysteine as the sulfur source, and their application in catalytic hydrogen production was also studied. The results demonstrated that the fluorescence properties will be quenched with the increase of temperature, indicating that the separation speed of electron hole pairs of samples obtained at higher temperature was faster. Meantime, the electron transport capacity and the photocurrent had also improved with the increase of reaction temperature. Finally, the sample obtained at 100 oC had higher hydrogen production rate.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pjct-2022-0010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract AgInS2 Quantum dots (AIS QDs) have high quantum yield and catalytic performance, which is promising materials in photo-catalytic and optoelectronic fields. In the paper, it adopted a simple and non-toxic method to synthesize AIS QDs. The effect of reaction temperature on the growth mechanism, optical and physical properties of AIS had been extensively investigated by using L-cysteine as the sulfur source, and their application in catalytic hydrogen production was also studied. The results demonstrated that the fluorescence properties will be quenched with the increase of temperature, indicating that the separation speed of electron hole pairs of samples obtained at higher temperature was faster. Meantime, the electron transport capacity and the photocurrent had also improved with the increase of reaction temperature. Finally, the sample obtained at 100 oC had higher hydrogen production rate.
AgInS2量子点的合成及其光电性能研究
摘要AgInS2量子点(AIS QDs)具有较高的量子产率和催化性能,在光催化和光电领域具有广阔的应用前景。本文采用一种简单无毒的方法合成了AIS量子点。以L-半胱氨酸为硫源,广泛研究了反应温度对AIS生长机理、光学和物理性能的影响,并研究了其在催化制氢中的应用。结果表明,荧光性质会随着温度的升高而猝灭,表明在较高温度下获得的样品的电子-空穴对的分离速度更快。同时,随着反应温度的升高,电子传输能力和光电流也有所提高。最后,在100℃下获得的样品具有更高的产氢速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polish Journal of Chemical Technology
Polish Journal of Chemical Technology CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
1.70
自引率
10.00%
发文量
22
审稿时长
4.5 months
期刊介绍: Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信