General Randić Index of Unicyclic Graphs With Given Number of Pendant Vertices

IF 1 Q1 MATHEMATICS
T. Vetrík, S. Balachandran
{"title":"General Randić Index of Unicyclic Graphs With Given Number of Pendant Vertices","authors":"T. Vetrík, S. Balachandran","doi":"10.47443/dml.2021.0124","DOIUrl":null,"url":null,"abstract":"© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/). Abstract For a ∈ R and a graph G, the general Randić index is defined as Ra(G) = ∑ uv∈E(G)[dG(u)dG(v)] , where E(G) is the edge set of G, and dG(u) and dG(v) are degrees of the vertices u and v in G, respectively. For −0.64 ≤ a < 0, we give lower bounds on the general Randić index for unicyclic graphs with given number of pendant vertices, and with given order and number of pendant vertices. The extremal graphs are presented as well. Lower bounds on the classical Randić index are corollaries of our bounds on the general Randić index.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2021.0124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/). Abstract For a ∈ R and a graph G, the general Randić index is defined as Ra(G) = ∑ uv∈E(G)[dG(u)dG(v)] , where E(G) is the edge set of G, and dG(u) and dG(v) are degrees of the vertices u and v in G, respectively. For −0.64 ≤ a < 0, we give lower bounds on the general Randić index for unicyclic graphs with given number of pendant vertices, and with given order and number of pendant vertices. The extremal graphs are presented as well. Lower bounds on the classical Randić index are corollaries of our bounds on the general Randić index.
具有给定悬垂顶点数的单圈图的一般Randić指数
©2022作者。这是一篇在CC BY(International 4.0)许可证(www.creativommons.org/licenses/BY/4.0/)下的开放访问文章。摘要对于a∈R和图G,一般Randić指数定义为Ra(G)=∑uv∈E(G)[dG(u)dG(v)],其中E(G)是G的边集,dG(u。对于−0.64≤a<0,我们给出了具有给定数量的垂顶点、具有给定阶数和垂顶点的单圈图的一般Randić指数的下界。给出了极值图。经典Randić指数的下界是我们在一般Randić指数上的下界的推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信