Offset-based curvilinear path estimation for mid vehicle collision detection and avoidance system using MARS

IF 0.8 Q4 ROBOTICS
N. Prabhakaran, M. S. Sudhakar
{"title":"Offset-based curvilinear path estimation for mid vehicle collision detection and avoidance system using MARS","authors":"N. Prabhakaran, M. S. Sudhakar","doi":"10.1108/IJIUS-04-2018-0009","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to propose a novel curvilinear path estimation model employing multivariate adaptive regression splines (MARS) for mid vehicle collision avoidance. The two-phase path estimation scheme initially uses the offset (position) value of the front and the mid (host) vehicle to build the crisp model. The resulting crisp model is MARS regressed to deliver a closely aligned actual model in the second phase. This arrangement significantly narrows the gap between the estimated and the true path analyzed using the mean square error (MSE) for different offsets on Next Generation Simulation Interstate 80 (NGSIM I-80) data set. The presented model also covers parallel parking by encompassing the reverse motion of the host vehicle in the path estimation, thereby, making it amicable for real-road scenarios.\n\n\nDesign/methodology/approach\nThe two-phase path estimation scheme initially uses the offset (position) value of the front and the mid (host) vehicle to build the crisp model. The resulting crisp model is MARS regressed to deliver a closely aligned actual model in the second phase.\n\n\nFindings\nThis arrangement significantly narrows the gap between the estimated and the true path studied using MSE for different offsets on real (Next Generation Simulation-NGSIM) data. The presented model also covers parallel parking by encompassing the reverse motion of the host vehicle in the path estimation. Thereby, making it amicable for real-road scenarios.\n\n\nOriginality/value\nThis paper builds a mathematical model that considers the offset and host (mid) vehicles for appropriate path fitting.\n","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1108/IJIUS-04-2018-0009","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/IJIUS-04-2018-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 2

Abstract

Purpose The purpose of this paper is to propose a novel curvilinear path estimation model employing multivariate adaptive regression splines (MARS) for mid vehicle collision avoidance. The two-phase path estimation scheme initially uses the offset (position) value of the front and the mid (host) vehicle to build the crisp model. The resulting crisp model is MARS regressed to deliver a closely aligned actual model in the second phase. This arrangement significantly narrows the gap between the estimated and the true path analyzed using the mean square error (MSE) for different offsets on Next Generation Simulation Interstate 80 (NGSIM I-80) data set. The presented model also covers parallel parking by encompassing the reverse motion of the host vehicle in the path estimation, thereby, making it amicable for real-road scenarios. Design/methodology/approach The two-phase path estimation scheme initially uses the offset (position) value of the front and the mid (host) vehicle to build the crisp model. The resulting crisp model is MARS regressed to deliver a closely aligned actual model in the second phase. Findings This arrangement significantly narrows the gap between the estimated and the true path studied using MSE for different offsets on real (Next Generation Simulation-NGSIM) data. The presented model also covers parallel parking by encompassing the reverse motion of the host vehicle in the path estimation. Thereby, making it amicable for real-road scenarios. Originality/value This paper builds a mathematical model that considers the offset and host (mid) vehicles for appropriate path fitting.
基于MARS的车中碰撞检测与避免系统基于偏移的曲线路径估计
目的本文提出了一种新的基于多元自适应回归样条的曲线路径估计模型。两阶段路径估计方案最初使用前部和中部(宿主)车辆的偏移(位置)值来构建清晰模型。得到的清晰模型是MARS回归,以在第二阶段提供紧密一致的实际模型。对于下一代仿真州际80(NGSIM I-80)数据集上的不同偏移,这种布置显著缩小了使用均方误差(MSE)分析的估计路径和真实路径之间的差距。所提出的模型还通过在路径估计中包含主车辆的反向运动来覆盖平行停车,从而使其对真实道路场景友好。设计/方法/方法两阶段路径估计方案最初使用前部和中部(宿主)车辆的偏移(位置)值来建立清晰的模型。得到的清晰模型是MARS回归,以在第二阶段提供紧密一致的实际模型。发现对于真实(下一代模拟NGSIM)数据上的不同偏移,这种安排显著缩小了使用MSE研究的估计路径和真实路径之间的差距。所提出的模型还通过在路径估计中包含主车辆的反向运动来覆盖平行停车。从而使其对真实的道路场景友好。独创性/价值本文建立了一个数学模型,该模型考虑了偏移和宿主(中间)车辆,以进行适当的路径拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信