{"title":"Strong Coproximinality in Bochner $L^p$-Spaces and in Köthe Spaces","authors":"J. Jawdat","doi":"10.29020/nybg.ejpam.v16i3.4800","DOIUrl":null,"url":null,"abstract":"In this paper, we study strong coproximinality in Bochner $L^p$-spaces and in the Köthe Bochner function space $E(X)$. We investigate some conditions to be imposed on the subspace $G$ of the Banach space $X$ such that $L^{p}\\left(\\mu,G \\right)$ is strongly coproximinal in $L^{p}\\left(\\mu,X \\right), 1 \\leq p <\\infty$. On the other hand, we prove that if $G$ is a separable subspace of $X$ then $G$ is strongly coproximinal in $X$ if and only if $E(G)$ is strongly coproximinal in $E(X)$, provided that $E$ is a strictly monotone Köthe space. This generalizes some results in the literature. Some other results in this direction are also presented.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study strong coproximinality in Bochner $L^p$-spaces and in the Köthe Bochner function space $E(X)$. We investigate some conditions to be imposed on the subspace $G$ of the Banach space $X$ such that $L^{p}\left(\mu,G \right)$ is strongly coproximinal in $L^{p}\left(\mu,X \right), 1 \leq p <\infty$. On the other hand, we prove that if $G$ is a separable subspace of $X$ then $G$ is strongly coproximinal in $X$ if and only if $E(G)$ is strongly coproximinal in $E(X)$, provided that $E$ is a strictly monotone Köthe space. This generalizes some results in the literature. Some other results in this direction are also presented.