{"title":"A Review of Daytime Atmospheric Optical Turbulence Profile Detection Technology","authors":"Deng Jian , Song Teng-fei , Liu Yu","doi":"10.1016/j.chinastron.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Atmospheric turbulence has been confirmed as the primary source affecting the quality of ground-based telescope image. To reduce the effect of atmosphere, a good site should be selected, and </span>adaptive optics (AO) should be installed for the telescope. In general, the daytime atmospheric turbulence is more intense than that at night under the effect of solar radiation. Numerous </span>solar telescopes<span> have built AO systems worldwide. Conventional AO is only capable of improving the image quality in a small field of view, whereas it cannot satisfy the needs of a large field of view. The novel wide field adaptive optical system is capable of achieving a large field of view and high-resolution images, whereas the atmospheric turbulence profile should be accurately detected, which is the prerequisite and key parameter of the novel AO system. Moreover, the astronomical high-resolution technology in accordance with the turbulence imaging theory requires more detailed detection of turbulence. Accordingly, a brief review about the latest detection technology of the daytime optical turbulence profile is valuable for astronomical observations. Besides, the parameters of atmospheric turbulence are briefly introduced. Subsequently, SNODAR, </span></span>SHABAR, MOSP, DIMM+, A-MASP, and other detection technologies of the stratified atmospheric turbulence for daytime are primarily presented, and the advantages and disadvantages of the different technologies are summarized.</p></div>","PeriodicalId":35730,"journal":{"name":"Chinese Astronomy and Astrophysics","volume":"47 2","pages":"Pages 257-284"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0275106223000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric turbulence has been confirmed as the primary source affecting the quality of ground-based telescope image. To reduce the effect of atmosphere, a good site should be selected, and adaptive optics (AO) should be installed for the telescope. In general, the daytime atmospheric turbulence is more intense than that at night under the effect of solar radiation. Numerous solar telescopes have built AO systems worldwide. Conventional AO is only capable of improving the image quality in a small field of view, whereas it cannot satisfy the needs of a large field of view. The novel wide field adaptive optical system is capable of achieving a large field of view and high-resolution images, whereas the atmospheric turbulence profile should be accurately detected, which is the prerequisite and key parameter of the novel AO system. Moreover, the astronomical high-resolution technology in accordance with the turbulence imaging theory requires more detailed detection of turbulence. Accordingly, a brief review about the latest detection technology of the daytime optical turbulence profile is valuable for astronomical observations. Besides, the parameters of atmospheric turbulence are briefly introduced. Subsequently, SNODAR, SHABAR, MOSP, DIMM+, A-MASP, and other detection technologies of the stratified atmospheric turbulence for daytime are primarily presented, and the advantages and disadvantages of the different technologies are summarized.
期刊介绍:
The vigorous growth of astronomical and astrophysical science in China led to an increase in papers on astrophysics which Acta Astronomica Sinica could no longer absorb. Translations of papers from two new journals the Chinese Journal of Space Science and Acta Astrophysica Sinica are added to the translation of Acta Astronomica Sinica to form the new journal Chinese Astronomy and Astrophysics. Chinese Astronomy and Astrophysics brings English translations of notable articles to astronomers and astrophysicists outside China.