A. Balkema-Buschmann, Grit Priemer, R. Ulrich, R. Strobelt, Bob Hills, M. Groschup
{"title":"Deciphering the BSE-type specific cell and tissue tropisms of atypical (H and L) and classical BSE","authors":"A. Balkema-Buschmann, Grit Priemer, R. Ulrich, R. Strobelt, Bob Hills, M. Groschup","doi":"10.1080/19336896.2019.1651180","DOIUrl":null,"url":null,"abstract":"ABSTRACT After the discovery of two atypical bovine spongiform encephalopathy (BSE) forms in France and Italy designated H- and L-BSE, the question arose whether these new forms differed from classical BSE (C-BSE) in their pathogenesis. Samples collected from cattle in the clinical stage of BSE during an intracranial challenge study with L- and H-BSE were analysed using biochemical and histological methods as well as in a transgenic mouse bioassay. Our results generally confirmed what had been described for C-BSE to be true also for both atypical BSE forms, namely the restriction of the pathological prion protein (PrPSc) and BSE infectivity to the nervous system. However, analysis of samples collected under identical conditions from both atypical H- and L-BSE forms allowed us a more precise assessment of the grade of involvement of different tissues during the clinical end stage of disease as compared to C-BSE. One important feature is the involvement of the peripheral nervous and musculoskeletal tissues in both L-BSE and H-BSE affected cattle. We were, however, able to show that in H-BSE cases, the PrPSc depositions in the central and peripheral nervous system are dominated by a glial pattern, whereas a neuronal deposition pattern dominates in L-BSE cases, indicating differences in the cellular and topical tropism of both atypical BSE forms. As a consequence of this cell tropism, H-BSE seems to spread more rapidly from the CNS into the periphery via the glial cell system such as Schwann cells, as opposed to L-BSE which is mostly propagated via neuronal cells.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336896.2019.1651180","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336896.2019.1651180","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
ABSTRACT After the discovery of two atypical bovine spongiform encephalopathy (BSE) forms in France and Italy designated H- and L-BSE, the question arose whether these new forms differed from classical BSE (C-BSE) in their pathogenesis. Samples collected from cattle in the clinical stage of BSE during an intracranial challenge study with L- and H-BSE were analysed using biochemical and histological methods as well as in a transgenic mouse bioassay. Our results generally confirmed what had been described for C-BSE to be true also for both atypical BSE forms, namely the restriction of the pathological prion protein (PrPSc) and BSE infectivity to the nervous system. However, analysis of samples collected under identical conditions from both atypical H- and L-BSE forms allowed us a more precise assessment of the grade of involvement of different tissues during the clinical end stage of disease as compared to C-BSE. One important feature is the involvement of the peripheral nervous and musculoskeletal tissues in both L-BSE and H-BSE affected cattle. We were, however, able to show that in H-BSE cases, the PrPSc depositions in the central and peripheral nervous system are dominated by a glial pattern, whereas a neuronal deposition pattern dominates in L-BSE cases, indicating differences in the cellular and topical tropism of both atypical BSE forms. As a consequence of this cell tropism, H-BSE seems to spread more rapidly from the CNS into the periphery via the glial cell system such as Schwann cells, as opposed to L-BSE which is mostly propagated via neuronal cells.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.