{"title":"On the rarefaction waves of the two-dimensional compressible Euler equations for magnetohydrodynamics","authors":"Jianjun Chen, G. Lai, Wancheng Sheng","doi":"10.1142/s0219891620500174","DOIUrl":null,"url":null,"abstract":"The expansion of a wedge of magnetic fluid into vacuum is studied in this paper. The magnetic fluid away from the sharp corner of a wedge expands into the vacuum as two plane-symmetric rarefaction waves, and the problem can be reduced to the interaction of these two rarefaction waves. In order to determine the flow in the interaction zone, we formulate a Goursat problem for the two-dimensional, self-similar Euler equations of magnetohydrodynamic. This system is of mixed type, and the type at each point is determined by the local fluid velocity and the local magneto-acoustic speed. We establish that the system is uniformly hyperbolic in the interaction zone when the half-angle of the wedge is less than some angle [Formula: see text], while the existence of a global classical solution to the Goursat problem is proven by a method of characteristic decomposition.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":"17 1","pages":"591-612"},"PeriodicalIF":0.5000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219891620500174","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891620500174","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4
Abstract
The expansion of a wedge of magnetic fluid into vacuum is studied in this paper. The magnetic fluid away from the sharp corner of a wedge expands into the vacuum as two plane-symmetric rarefaction waves, and the problem can be reduced to the interaction of these two rarefaction waves. In order to determine the flow in the interaction zone, we formulate a Goursat problem for the two-dimensional, self-similar Euler equations of magnetohydrodynamic. This system is of mixed type, and the type at each point is determined by the local fluid velocity and the local magneto-acoustic speed. We establish that the system is uniformly hyperbolic in the interaction zone when the half-angle of the wedge is less than some angle [Formula: see text], while the existence of a global classical solution to the Goursat problem is proven by a method of characteristic decomposition.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.