Segre classes of tautological bundles on Hilbert schemes of surfaces

IF 1.2 1区 数学 Q1 MATHEMATICS
C. Voisin
{"title":"Segre classes of tautological bundles on Hilbert schemes of surfaces","authors":"C. Voisin","doi":"10.14231/AG-2019-010","DOIUrl":null,"url":null,"abstract":"We first give an alternative proof, based on a simple geometric argument, of a result of Marian, Oprea and Pandharipande on top Segre classes of the tautological bundles on Hilbert schemes of $K3$ surfaces equipped with a line bundle. We then turn to the blow-up of $K3$ surface at one point and establish vanishing results for the corresponding top Segre classes in a certain range. This determines, at least theoretically, all top Segre classes of tautological bundles for any pair $(\\Sigma,H),\\,H\\in {\\rm Pic}\\,\\Sigma$.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2019-010","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 26

Abstract

We first give an alternative proof, based on a simple geometric argument, of a result of Marian, Oprea and Pandharipande on top Segre classes of the tautological bundles on Hilbert schemes of $K3$ surfaces equipped with a line bundle. We then turn to the blow-up of $K3$ surface at one point and establish vanishing results for the corresponding top Segre classes in a certain range. This determines, at least theoretically, all top Segre classes of tautological bundles for any pair $(\Sigma,H),\,H\in {\rm Pic}\,\Sigma$.
Hilbert曲面方案上的重言丛的Segre类
我们首先基于一个简单的几何论证,给出了Marian、Oprea和Pandharipande在配备有线丛的$K3$曲面的Hilbert方案上的重言丛的顶Segre类上的结果的另一个证明。然后,我们转向$K3$曲面在某一点上的爆破,并在一定范围内建立相应的顶级Segre类的消失结果。这至少在理论上确定了{\rm-Pic}\,\ Sigma$中的任何对$(\ Sigma,H),\,H\的重言丛的所有顶级Segre类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信