{"title":"Development of a new in-situ rotating magnetorheological honing technique for fine finishing the inner cylindric surfaces","authors":"S. Paswan, Anant Kumar Singh","doi":"10.1080/10910344.2022.2129990","DOIUrl":null,"url":null,"abstract":"Abstract A new in-situ rotary magnetorheological honing (RMRH) approach has been developed in this study to fine-finish the machined inner surface of cylindric workpieces with increased productivity and dimensional accuracy. A single in-situ honing tool is used for performing both traditional as well as magnetorheological (MR) honing. The tool is fabricated based on the designed tool through magnetostatic analysis. In this work, the final MR finished surface is achieved up to 60 nm from the original machined surface roughness of 510 nm with the expense of 40 min of traditional honing and 60 min of MR finishing. Also, the great improvement in surface waviness is confirmed through the final surface waviness is achieved as 50 nm from the initial surface waviness of 1460 nm. The improvement in circularity is confirmed through the circularity test performed in this work. The improvement in surface texture has been analyzed through the scanning electron microscope images. As a result of the finishing capability of the currently designed in-situ tool, it is useful in a variety of industrial applications such as oil pipes, bearings, hydraulic cylinders, cylindrical molds, cylindrical barrels of injection molding machines, compressor bodies, valve bodies, etc.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2022.2129990","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A new in-situ rotary magnetorheological honing (RMRH) approach has been developed in this study to fine-finish the machined inner surface of cylindric workpieces with increased productivity and dimensional accuracy. A single in-situ honing tool is used for performing both traditional as well as magnetorheological (MR) honing. The tool is fabricated based on the designed tool through magnetostatic analysis. In this work, the final MR finished surface is achieved up to 60 nm from the original machined surface roughness of 510 nm with the expense of 40 min of traditional honing and 60 min of MR finishing. Also, the great improvement in surface waviness is confirmed through the final surface waviness is achieved as 50 nm from the initial surface waviness of 1460 nm. The improvement in circularity is confirmed through the circularity test performed in this work. The improvement in surface texture has been analyzed through the scanning electron microscope images. As a result of the finishing capability of the currently designed in-situ tool, it is useful in a variety of industrial applications such as oil pipes, bearings, hydraulic cylinders, cylindrical molds, cylindrical barrels of injection molding machines, compressor bodies, valve bodies, etc.
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining