Heat Generation and Thermal Transport in Lithium-Ion Batteries: A Scale-Bridging Perspective

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Rajath Kantharaj, A. Marconnet
{"title":"Heat Generation and Thermal Transport in Lithium-Ion Batteries: A Scale-Bridging Perspective","authors":"Rajath Kantharaj, A. Marconnet","doi":"10.1080/15567265.2019.1572679","DOIUrl":null,"url":null,"abstract":"ABSTRACT Lithium-ion batteries (LIBs) are complex, heterogeneous systems with coupled electrochemical and thermal phenomena that lead to elevated temperatures, which, in turn, limit safety, reliability, and performance. Despite years of research, there are still open questions about the electrochemical-thermal phenomena within battery cells. This article highlights recent advances in thermal characterization and modeling of LIBs with an emphasis on the multi-scale aspect of battery systems: from the microscale electrode components to the macroscale battery packs. Both heat generation and thermal properties (thermal conductivity and specific heat capacity) are impacted by battery capacity, charge/discharge rate, ambient conditions, and the underlying microstructure. Understanding thermal phenomena and designing batteries to prevent thermal runaway requires multiscale efforts from the microstructure of the electrodes to the overall system behavior. Experimental efforts have focused on both property and performance characterization, as well as development of new battery chemistries for improved performance and new designs for improved thermal management. Past numerical modeling work ranges from computationally efficient lumped approaches to high fidelity microstructural finite element models. Ultimately, coupled electrochemical-thermal investigations (both numerical and experimental) are required to further improve the performance and reliability of batteries, and to prevent thermal runaway. This perspective article provides insight into directions to improve these approaches with the goal of informing design of batteries with improved performance, safety, and reliability.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"23 1","pages":"128 - 156"},"PeriodicalIF":2.7000,"publicationDate":"2019-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2019.1572679","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2019.1572679","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 40

Abstract

ABSTRACT Lithium-ion batteries (LIBs) are complex, heterogeneous systems with coupled electrochemical and thermal phenomena that lead to elevated temperatures, which, in turn, limit safety, reliability, and performance. Despite years of research, there are still open questions about the electrochemical-thermal phenomena within battery cells. This article highlights recent advances in thermal characterization and modeling of LIBs with an emphasis on the multi-scale aspect of battery systems: from the microscale electrode components to the macroscale battery packs. Both heat generation and thermal properties (thermal conductivity and specific heat capacity) are impacted by battery capacity, charge/discharge rate, ambient conditions, and the underlying microstructure. Understanding thermal phenomena and designing batteries to prevent thermal runaway requires multiscale efforts from the microstructure of the electrodes to the overall system behavior. Experimental efforts have focused on both property and performance characterization, as well as development of new battery chemistries for improved performance and new designs for improved thermal management. Past numerical modeling work ranges from computationally efficient lumped approaches to high fidelity microstructural finite element models. Ultimately, coupled electrochemical-thermal investigations (both numerical and experimental) are required to further improve the performance and reliability of batteries, and to prevent thermal runaway. This perspective article provides insight into directions to improve these approaches with the goal of informing design of batteries with improved performance, safety, and reliability.
锂离子电池的热产生和热传输:规模桥接视角
摘要锂离子电池是一种复杂、异质的系统,具有耦合的电化学和热现象,会导致温度升高,进而限制安全性、可靠性和性能。尽管进行了多年的研究,但电池内的电化学热现象仍然存在悬而未决的问题。本文重点介绍了LIBs热表征和建模的最新进展,重点介绍了电池系统的多尺度方面:从微观电极组件到宏观电池组。发热和热性能(热导率和比热容)都受到电池容量、充电/放电速率、环境条件和潜在微观结构的影响。了解热现象和设计电池以防止热失控需要从电极的微观结构到整个系统行为的多尺度努力。实验工作集中在性能和性能表征,以及开发新的电池化学物质以提高性能和改进热管理的新设计上。过去的数值建模工作范围从计算高效的集总方法到高保真微观结构有限元模型。最终,需要进行耦合的电化学热研究(包括数值和实验),以进一步提高电池的性能和可靠性,并防止热失控。这篇前瞻性文章深入了解了改进这些方法的方向,目的是为电池的设计提供信息,提高性能、安全性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信