{"title":"Expansion of detectable area by floating electrodes in capacitive three-dimensional proximity sensor","authors":"M. Deguchi","doi":"10.21307/ijssis-2021-018","DOIUrl":null,"url":null,"abstract":"Abstract In the capacitive proximity sensing method, arranging multiple sensing electrodes makes it possible to obtain the three-dimensional position of a nearby object. The author has developed a capacitive proximity sensing method using LC resonance in three reactance elements. In this method, the detectable area can be greatly extended by the floating electrodes, which are capacitively connected to the sensing electrode. By connecting multiple floating electrodes in series, the detectable range can be extended up to the length of the array of floating electrodes. When these electrodes are arranged on a frame, the region surrounded by the frame becomes the detectable area. By applying this frame on any surface, it is possible to make the surface within the opening of the frame a non-contact operating panel, which can be applied as a gesture input device.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":"14 1","pages":"1 - 11"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/ijssis-2021-018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In the capacitive proximity sensing method, arranging multiple sensing electrodes makes it possible to obtain the three-dimensional position of a nearby object. The author has developed a capacitive proximity sensing method using LC resonance in three reactance elements. In this method, the detectable area can be greatly extended by the floating electrodes, which are capacitively connected to the sensing electrode. By connecting multiple floating electrodes in series, the detectable range can be extended up to the length of the array of floating electrodes. When these electrodes are arranged on a frame, the region surrounded by the frame becomes the detectable area. By applying this frame on any surface, it is possible to make the surface within the opening of the frame a non-contact operating panel, which can be applied as a gesture input device.
期刊介绍:
nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity