Robust Covariance Matrix Estimation for High-Dimensional Compositional Data with Application to Sales Data Analysis.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2023-01-01 Epub Date: 2022-09-21 DOI:10.1080/07350015.2022.2106990
Danning Li, Arun Srinivasan, Qian Chen, Lingzhou Xue
{"title":"Robust Covariance Matrix Estimation for High-Dimensional Compositional Data with Application to Sales Data Analysis.","authors":"Danning Li, Arun Srinivasan, Qian Chen, Lingzhou Xue","doi":"10.1080/07350015.2022.2106990","DOIUrl":null,"url":null,"abstract":"<p><p>Compositional data arises in a wide variety of research areas when some form of standardization and composition is necessary. Estimating covariance matrices is of fundamental importance for high-dimensional compositional data analysis. However, existing methods require the restrictive Gaussian or sub-Gaussian assumption, which may not hold in practice. We propose a robust composition adjusted thresholding covariance procedure based on Huber-type M-estimation to estimate the sparse covariance structure of high-dimensional compositional data. We introduce a cross-validation procedure to choose the tuning parameters of the proposed method. Theoretically, by assuming a bounded fourth moment condition, we obtain the rates of convergence and signal recovery property for the proposed method and provide the theoretical guarantees for the cross-validation procedure under the high-dimensional setting. Numerically, we demonstrate the effectiveness of the proposed method in simulation studies and also a real application to sales data analysis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730115/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2106990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Compositional data arises in a wide variety of research areas when some form of standardization and composition is necessary. Estimating covariance matrices is of fundamental importance for high-dimensional compositional data analysis. However, existing methods require the restrictive Gaussian or sub-Gaussian assumption, which may not hold in practice. We propose a robust composition adjusted thresholding covariance procedure based on Huber-type M-estimation to estimate the sparse covariance structure of high-dimensional compositional data. We introduce a cross-validation procedure to choose the tuning parameters of the proposed method. Theoretically, by assuming a bounded fourth moment condition, we obtain the rates of convergence and signal recovery property for the proposed method and provide the theoretical guarantees for the cross-validation procedure under the high-dimensional setting. Numerically, we demonstrate the effectiveness of the proposed method in simulation studies and also a real application to sales data analysis.

高维成分数据的稳健协方差矩阵估计及其在销售数据分析中的应用
摘要当需要某种形式的标准化和合成时,合成数据出现在各种各样的研究领域。估计协方差矩阵对于高维成分数据分析至关重要。然而,现有的方法需要限制性的高斯或亚高斯假设,这在实践中可能不成立。我们提出了一种基于Huber型M-估计的稳健组合调整阈值协方差过程来估计高维组合数据的稀疏协方差结构。我们引入了一个交叉验证程序来选择所提出方法的调谐参数。理论上,通过假设有界四阶矩条件,我们获得了所提出方法的收敛速度和信号恢复特性,并为高维设置下的交叉验证过程提供了理论保证。通过数值计算,我们证明了所提出的方法在模拟研究中的有效性,并将其实际应用于销售数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信