{"title":"Forks, noodles and the Burau representation for n=4","authors":"A. Beridze , P. Traczyk","doi":"10.1016/j.trmi.2018.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>The reduced Burau representation is a natural action of the braid group <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> on the first homology group <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>D</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>;</mo><mi>Z</mi><mo>)</mo></mrow></math></span> of a suitable infinite cyclic covering space <span><math><msub><mrow><mover><mrow><mi>D</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> of the <span><math><mi>n</mi></math></span>-punctured disc <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. It is known that the Burau representation is faithful for <span><math><mi>n</mi><mo>≤</mo><mn>3</mn></math></span>\nand that it is not faithful for <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>. We use forks and noodles homological techniques and Bokut–Vesnin generators to analyze the problem for <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span>. We present a Conjecture implying faithfulness and a Lemma explaining the implication. We give some arguments suggesting why we expect the Conjecture to be true. Also, we give some geometrically calculated examples and information about data gathered using a C<span>++</span> program.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 3","pages":"Pages 337-353"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.05.001","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809218300059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
The reduced Burau representation is a natural action of the braid group on the first homology group of a suitable infinite cyclic covering space of the -punctured disc . It is known that the Burau representation is faithful for
and that it is not faithful for . We use forks and noodles homological techniques and Bokut–Vesnin generators to analyze the problem for . We present a Conjecture implying faithfulness and a Lemma explaining the implication. We give some arguments suggesting why we expect the Conjecture to be true. Also, we give some geometrically calculated examples and information about data gathered using a C++ program.