Forks, noodles and the Burau representation for n=4

IF 0.3 Q4 MATHEMATICS
A. Beridze , P. Traczyk
{"title":"Forks, noodles and the Burau representation for n=4","authors":"A. Beridze ,&nbsp;P. Traczyk","doi":"10.1016/j.trmi.2018.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>The reduced Burau representation is a natural action of the braid group <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> on the first homology group <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>D</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>;</mo><mi>Z</mi><mo>)</mo></mrow></math></span> of a suitable infinite cyclic covering space <span><math><msub><mrow><mover><mrow><mi>D</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> of the <span><math><mi>n</mi></math></span>-punctured disc <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. It is known that the Burau representation is faithful for <span><math><mi>n</mi><mo>≤</mo><mn>3</mn></math></span>\nand that it is not faithful for <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>. We use forks and noodles homological techniques and Bokut–Vesnin generators to analyze the problem for <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span>. We present a Conjecture implying faithfulness and a Lemma explaining the implication. We give some arguments suggesting why we expect the Conjecture to be true. Also, we give some geometrically calculated examples and information about data gathered using a C<span>++</span> program.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 3","pages":"Pages 337-353"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.05.001","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809218300059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

The reduced Burau representation is a natural action of the braid group Bn on the first homology group H1(D̃n;Z) of a suitable infinite cyclic covering space D̃n of the n-punctured disc Dn. It is known that the Burau representation is faithful for n3 and that it is not faithful for n5. We use forks and noodles homological techniques and Bokut–Vesnin generators to analyze the problem for n=4. We present a Conjecture implying faithfulness and a Lemma explaining the implication. We give some arguments suggesting why we expect the Conjecture to be true. Also, we give some geometrically calculated examples and information about data gathered using a C++ program.

叉子,面条和局表示为n=4
简化的Burau表示是编织群Bn对n穿孔圆盘Dn的合适无限循环覆盖空间Dn的第一同调群H1(D n;Z)的自然作用。已知当n≤3时,Burau表示是忠实的,当n≥5时,它是不忠实的。我们使用叉面同调技术和Bokut-Vesnin生成器来分析n=4时的问题。我们提出了一个暗示忠诚的猜想和一个解释这一暗示的引理。我们给出了一些论据来说明为什么我们期望猜想是正确的。此外,我们还给出了一些几何计算的例子和使用c++程序收集数据的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信