ECO++: Adaptive deep feature fusion target tracking method in complex scene

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS
Yuhan Liu , He Yan , Qilie Liu , Wei Zhang , Junbin Huang
{"title":"ECO++: Adaptive deep feature fusion target tracking method in complex scene","authors":"Yuhan Liu ,&nbsp;He Yan ,&nbsp;Qilie Liu ,&nbsp;Wei Zhang ,&nbsp;Junbin Huang","doi":"10.1016/j.dcan.2022.10.020","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient Convolution Operator (ECO) algorithms have achieved impressive performances in visual tracking. However, its feature extraction network of ECO is unconducive for capturing the correlation features of occluded and blurred targets between long-range complex scene frames. More so, its fixed weight fusion strategy does not use the complementary properties of deep and shallow features. In this paper, we propose a new target tracking method, namely ECO++, using deep feature adaptive fusion in a complex scene, in the following two aspects: First, we constructed a new temporal convolution mode and used it to replace the underlying convolution layer in Conformer network to obtain an improved Conformer network. Second, we adaptively fuse the deep features, which output through the improved Conformer network, by combining the Peak to Sidelobe Ratio (PSR), frame smoothness scores and adaptive adjustment weight. Extensive experiments on the OTB-2013, OTB-2015, UAV123, and VOT2019 benchmarks demonstrate that the proposed approach outperforms the state-of-the-art algorithms in tracking accuracy and robustness in complex scenes with occluded, blurred, and fast-moving targets.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 5","pages":"Pages 1352-1364"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822002292","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient Convolution Operator (ECO) algorithms have achieved impressive performances in visual tracking. However, its feature extraction network of ECO is unconducive for capturing the correlation features of occluded and blurred targets between long-range complex scene frames. More so, its fixed weight fusion strategy does not use the complementary properties of deep and shallow features. In this paper, we propose a new target tracking method, namely ECO++, using deep feature adaptive fusion in a complex scene, in the following two aspects: First, we constructed a new temporal convolution mode and used it to replace the underlying convolution layer in Conformer network to obtain an improved Conformer network. Second, we adaptively fuse the deep features, which output through the improved Conformer network, by combining the Peak to Sidelobe Ratio (PSR), frame smoothness scores and adaptive adjustment weight. Extensive experiments on the OTB-2013, OTB-2015, UAV123, and VOT2019 benchmarks demonstrate that the proposed approach outperforms the state-of-the-art algorithms in tracking accuracy and robustness in complex scenes with occluded, blurred, and fast-moving targets.
复杂场景下自适应深度特征融合目标跟踪方法
高效卷积算子(Efficient Convolution Operator,ECO)算法在视觉跟踪方面取得了令人瞩目的成就。然而,ECO 算法的特征提取网络无法捕捉远距离复杂场景帧之间的遮挡和模糊目标的相关特征。此外,其固定权重融合策略也没有利用深层和浅层特征的互补性。本文从以下两个方面提出了一种在复杂场景中使用深层特征自适应融合的新型目标跟踪方法,即 ECO++:首先,我们构建了一种新的时空卷积模式,并用它来替换 Conformer 网络中的底层卷积层,从而得到一种改进的 Conformer 网络。其次,我们结合峰值与边框比(PSR)、帧平滑度得分和自适应调整权重,对通过改进的 Conformer 网络输出的深度特征进行自适应融合。在 OTB-2013、OTB-2015、UAV123 和 VOT2019 基准上进行的广泛实验表明,在目标遮挡、模糊和快速移动的复杂场景中,所提出的方法在跟踪精度和鲁棒性方面优于最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信