Hyperbolic Number Forms of Euler-Savary Equation

IF 0.4 Q4 MATHEMATICS
Duygu Çağlar, N. Gürses
{"title":"Hyperbolic Number Forms of Euler-Savary Equation","authors":"Duygu Çağlar, N. Gürses","doi":"10.36890/iejg.1127959","DOIUrl":null,"url":null,"abstract":"This study deals with hyperbolic number forms of Euler-Savary Equation (ESE) to find either the four special points on the pole ray. While obtaining the hyperbolic ESE forms, one-parameter planar motion is considered according to the osculating circles contacting at three infinitesimally close points. This approach with the hyperbolic number method gives more detailed information than the traditional method. As a final part, examples are given to show the utility of the practical way in the application.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1127959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study deals with hyperbolic number forms of Euler-Savary Equation (ESE) to find either the four special points on the pole ray. While obtaining the hyperbolic ESE forms, one-parameter planar motion is considered according to the osculating circles contacting at three infinitesimally close points. This approach with the hyperbolic number method gives more detailed information than the traditional method. As a final part, examples are given to show the utility of the practical way in the application.
欧拉-萨瓦里方程的双曲数形式
研究了Euler-Savary方程(ESE)的双曲数形式,以求极射线上的四个特殊点。在获得双曲ESE形式时,根据在三个无穷小的闭合点接触的密切圆来考虑单参数平面运动。与传统的方法相比,这种双曲数方法提供了更详细的信息。最后通过实例说明了该方法在实际应用中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信