Parallel investigations of remote sensing and ground-truth Lake Chad's level data using statistical and machine learning methods

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kim-Ndor Djimadoumngar
{"title":"Parallel investigations of remote sensing and ground-truth Lake Chad's level data using statistical and machine learning methods","authors":"Kim-Ndor Djimadoumngar","doi":"10.1016/j.acags.2023.100135","DOIUrl":null,"url":null,"abstract":"<div><p>Lake Chad is facing critical situations since the 1960s due to the effects of climate change and anthropogenic activities. The statistical analyses of remote sensing climate variables (i.e., evapotranspiration, specific humidity, soil temperature, air temperature, precipitation, soil moisture) and remote sensing and ground-truth lake level applied to the period 1993–2012 reveal that remote sensing data has a skewed distribution; ground-truth data has a symmetrical distribution. Linear Regression (LR), Support Vector Regression (SVR), Regression Tree (RT), Random Forest Regression (RF), and Deep Learning (DL) methods show that (i) RF and LR, with the highest R<sup>2</sup> and EVS and least MAE, MSE, <span><math><mtext>RMSE</mtext></math></span> and, <span><math><mrow><msub><mtext>CV</mtext><mtext>MSE</mtext></msub></mrow></math></span> values seem the best models to further investigate remote sensing and ground-truth lake level data and (ii) the remote sensing data based models outperform the ground-truth data based models based on their <span><math><mtext>MAE</mtext></math></span>, <span><math><mtext>MSE</mtext></math></span>, <span><math><mtext>RMSE</mtext></math></span>, and <span><math><mrow><msub><mtext>CV</mtext><mtext>MSE</mtext></msub></mrow></math></span> values. The most useful variables to predict lake level are precipitation and air temperature. The data analysis methodology reported here is of fundamental importance for the perspectives of an integrated and forward-looking water management system for connecting climate change, vulnerability, and human activities in the Lake Chad human-environment system. Corroboration studies are needed when more ground-truth data eventually are obtainable.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"20 ","pages":"Article 100135"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197423000241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Lake Chad is facing critical situations since the 1960s due to the effects of climate change and anthropogenic activities. The statistical analyses of remote sensing climate variables (i.e., evapotranspiration, specific humidity, soil temperature, air temperature, precipitation, soil moisture) and remote sensing and ground-truth lake level applied to the period 1993–2012 reveal that remote sensing data has a skewed distribution; ground-truth data has a symmetrical distribution. Linear Regression (LR), Support Vector Regression (SVR), Regression Tree (RT), Random Forest Regression (RF), and Deep Learning (DL) methods show that (i) RF and LR, with the highest R2 and EVS and least MAE, MSE, RMSE and, CVMSE values seem the best models to further investigate remote sensing and ground-truth lake level data and (ii) the remote sensing data based models outperform the ground-truth data based models based on their MAE, MSE, RMSE, and CVMSE values. The most useful variables to predict lake level are precipitation and air temperature. The data analysis methodology reported here is of fundamental importance for the perspectives of an integrated and forward-looking water management system for connecting climate change, vulnerability, and human activities in the Lake Chad human-environment system. Corroboration studies are needed when more ground-truth data eventually are obtainable.

利用统计和机器学习方法对遥感和地面真实乍得湖水位数据进行平行调查
自20世纪60年代以来,由于气候变化和人类活动的影响,乍得湖面临着严峻的形势。1993-2012年遥感气候变量(蒸散发、比湿度、土壤温度、气温、降水、土壤湿度)以及遥感和地真湖平面的统计分析表明,遥感数据存在偏态分布;地面真实数据具有对称分布。线性回归(LR)、支持向量回归(SVR)、回归树(RT)、随机森林回归(RF)和深度学习(DL)方法表明:(1)RF和LR具有最高的R2和EVS, MAE、MSE、RMSE和CVMSE值最小;(2)基于遥感数据的模型在MAE、MSE、RMSE和CVMSE值上优于基于地真数据的模型。预测水位最有用的变量是降水和气温。本文报告的数据分析方法对于建立一个综合的前瞻性水管理系统的视角具有重要意义,该系统可以将乍得湖人类环境系统中的气候变化、脆弱性和人类活动联系起来。当最终获得更多的真实数据时,需要进行确证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信