{"title":"Free boundary partial regularity in the thin obstacle problem","authors":"Federico Franceschini, Joaquim Serra","doi":"10.1002/cpa.22152","DOIUrl":null,"url":null,"abstract":"<p>For the thin obstacle problem in <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\ge 2$</annotation>\n </semantics></math>, we prove that at <i>all</i> free boundary points, with the exception of a <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n-3)$</annotation>\n </semantics></math>-dimensional set, the solution differs from its blow-up by higher order corrections. This expansion entails a <i>C</i><sup>1, 1</sup>-type free boundary regularity result, up to a codimension 3 set.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 1","pages":"630-669"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22152","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
For the thin obstacle problem in , , we prove that at all free boundary points, with the exception of a -dimensional set, the solution differs from its blow-up by higher order corrections. This expansion entails a C1, 1-type free boundary regularity result, up to a codimension 3 set.