Generalized almost statistical convergence

IF 0.1 Q4 MATHEMATICS
A. Shaikh, B. Datta
{"title":"Generalized almost statistical convergence","authors":"A. Shaikh, B. Datta","doi":"10.14321/REALANALEXCH.45.2.0439","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to introduce the notion of generalized almost statistical (briefly, GAS) convergence of bounded real sequences, which generalizes the notion of almost convergence as well as statistical convergence of bounded real sequences. As a special kind of Banach limit functional, we also introduce the concept of Banach statistical limit functional and the notion of GAS convergence mainly depends on the existence of Banach statistical limit functional. We prove the existence of Banach statistical limit functional. Then we have shown the existence of a GAS convergent sequence, which is neither statistical convergent nor almost convergent. Also, some topological properties of the space of all GAS convergent sequences are investigated.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/REALANALEXCH.45.2.0439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The objective of this paper is to introduce the notion of generalized almost statistical (briefly, GAS) convergence of bounded real sequences, which generalizes the notion of almost convergence as well as statistical convergence of bounded real sequences. As a special kind of Banach limit functional, we also introduce the concept of Banach statistical limit functional and the notion of GAS convergence mainly depends on the existence of Banach statistical limit functional. We prove the existence of Banach statistical limit functional. Then we have shown the existence of a GAS convergent sequence, which is neither statistical convergent nor almost convergent. Also, some topological properties of the space of all GAS convergent sequences are investigated.
广义几乎统计收敛
本文的目的是引入有界实序列的广义几乎统计收敛的概念,它推广了有界实序列的几乎收敛和统计收敛的概念。作为一类特殊的Banach极限泛函,我们还引入了Banach统计极限泛函的概念,并且GAS收敛的概念主要依赖于Banach统计极限泛函的存在性。证明了Banach统计极限泛函的存在性。然后我们证明了一个既不统计收敛也不几乎收敛的GAS收敛序列的存在性。同时,研究了所有GAS收敛序列空间的一些拓扑性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信