{"title":"On the confusion coefficient of Boolean functions","authors":"Yu Zhou, Jianyong Hu, Xudong Miao, Yu Han, Fuzhong Zhang","doi":"10.1515/jmc-2021-0012","DOIUrl":null,"url":null,"abstract":"Abstract The notion of the confusion coefficient is a property that attempts to characterize confusion property of cryptographic algorithms against differential power analysis. In this article, we establish a relationship between the confusion coefficient and the autocorrelation function for any Boolean function and give a tight upper bound and a tight lower bound on the confusion coefficient for any (balanced) Boolean function. We also deduce some deep relationships between the sum-of-squares of the confusion coefficient and other cryptographic indicators (the sum-of-squares indicator, hamming weight, algebraic immunity and correlation immunity), respectively. Moreover, we obtain some trade-offs among the sum-of-squares of the confusion coefficient, the signal-to-noise ratio and the redefined transparency order for a Boolean function.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"16 1","pages":"1 - 13"},"PeriodicalIF":0.5000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2021-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The notion of the confusion coefficient is a property that attempts to characterize confusion property of cryptographic algorithms against differential power analysis. In this article, we establish a relationship between the confusion coefficient and the autocorrelation function for any Boolean function and give a tight upper bound and a tight lower bound on the confusion coefficient for any (balanced) Boolean function. We also deduce some deep relationships between the sum-of-squares of the confusion coefficient and other cryptographic indicators (the sum-of-squares indicator, hamming weight, algebraic immunity and correlation immunity), respectively. Moreover, we obtain some trade-offs among the sum-of-squares of the confusion coefficient, the signal-to-noise ratio and the redefined transparency order for a Boolean function.