{"title":"Solar Angle Model for Daylight Redirection in Prismatic Panel","authors":"M. Zanganeh, Iman Sheikh Ansari","doi":"10.15627/jd.2022.19","DOIUrl":null,"url":null,"abstract":"An advanced complex fenestration system can utilize uniform daylight. Nonetheless, an inefficient design would increase solar heat gain and indoor temperatures, besides uneven light distribution that would cause the \"cave effect.\" Prismatic panels are widely used as complex fenestration systems, providing uniform daylight. This paper proposes a computational model that integrates optical principles like Snell's law with environmental variables and visualizes the performance of prismatic panels in terms of redirection angle while encountering the prism refractive index and geometry at the specified geographic location. The proposed model entails a prismatic panel as a daylight system for redirecting daylight. In contrast to detailed modeling needed for simulation in software programs like Radiance, this computational tool provides a more straightforward and efficient solution for the initial design of light redirection panels that rely on the principle of refraction and evaluate their annual performance based on the angle of deviation. The model's applicability has been demonstrated by utilizing various triangular prism design examples with diverse materials in Frankfurt and Helsinki.","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Daylighting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15627/jd.2022.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
An advanced complex fenestration system can utilize uniform daylight. Nonetheless, an inefficient design would increase solar heat gain and indoor temperatures, besides uneven light distribution that would cause the "cave effect." Prismatic panels are widely used as complex fenestration systems, providing uniform daylight. This paper proposes a computational model that integrates optical principles like Snell's law with environmental variables and visualizes the performance of prismatic panels in terms of redirection angle while encountering the prism refractive index and geometry at the specified geographic location. The proposed model entails a prismatic panel as a daylight system for redirecting daylight. In contrast to detailed modeling needed for simulation in software programs like Radiance, this computational tool provides a more straightforward and efficient solution for the initial design of light redirection panels that rely on the principle of refraction and evaluate their annual performance based on the angle of deviation. The model's applicability has been demonstrated by utilizing various triangular prism design examples with diverse materials in Frankfurt and Helsinki.
期刊介绍:
Journal of Daylighting is an international journal devoted to investigations of daylighting in buildings. It is the leading journal that publishes original research on all aspects of solar energy and lighting. Areas of special interest for this journal include, but are not limited to, the following: -Daylighting systems -Lighting simulation -Lighting designs -Luminaires -Lighting metrology and light quality -Lighting control -Building physics - lighting -Building energy modeling -Energy efficient buildings -Zero-energy buildings -Indoor environment quality -Sustainable solar energy systems -Application of solar energy sources in buildings -Photovoltaics systems -Building-integrated photovoltaics -Concentrator technology -Concentrator photovoltaic -Solar thermal