Estimation of highly heterogeneous multinomial probabilities observed at the beginning of COVID-19

Q3 Medicine
T. Ogura, T. Yanagimoto
{"title":"Estimation of highly heterogeneous multinomial probabilities observed at the beginning of COVID-19","authors":"T. Ogura, T. Yanagimoto","doi":"10.1080/24709360.2022.2064693","DOIUrl":null,"url":null,"abstract":"The daily counts of COVID-19 cases differed significantly from one region to another at the beginning of the COVID-19 pandemic in any given country. The disease first hit some regions before spreading to others. The Poisson distribution is frequently used to analyze disease occurrence in certain locations at certain times. However, in highly heterogeneous situations, the estimator of multiple Poisson means is not close to the actual population parameter. The estimator of multinomial probabilities under an existing prior is also not close to the actual population parameter in highly heterogeneous situations. We propose a Bayesian estimator of multinomial probabilities under a data-dependent prior. This prior is built using zeta distribution coefficients and depends only on the rank of data. Using simulation studies, the proposed estimator is evaluated with two well-known risks. Finally, the daily counts of COVID-19 cases are analyzed to show how the proposed estimator can be used in practice.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"6 1","pages":"164 - 181"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2022.2064693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The daily counts of COVID-19 cases differed significantly from one region to another at the beginning of the COVID-19 pandemic in any given country. The disease first hit some regions before spreading to others. The Poisson distribution is frequently used to analyze disease occurrence in certain locations at certain times. However, in highly heterogeneous situations, the estimator of multiple Poisson means is not close to the actual population parameter. The estimator of multinomial probabilities under an existing prior is also not close to the actual population parameter in highly heterogeneous situations. We propose a Bayesian estimator of multinomial probabilities under a data-dependent prior. This prior is built using zeta distribution coefficients and depends only on the rank of data. Using simulation studies, the proposed estimator is evaluated with two well-known risks. Finally, the daily counts of COVID-19 cases are analyzed to show how the proposed estimator can be used in practice.
新冠肺炎开始时观察到的高度异质多项式概率的估计
在任何一个国家的新冠肺炎大流行开始时,每个地区的每日新冠肺炎病例数都有显著差异。这种疾病在传播到其他地区之前先袭击了一些地区。泊松分布经常用于分析特定时间特定地点的疾病发生情况。然而,在高度异质的情况下,多重泊松均值的估计量并不接近实际的总体参数。在高度异质的情况下,现有先验下多项式概率的估计量也不接近实际的总体参数。我们提出了在数据相关先验条件下多项式概率的贝叶斯估计。该先验是使用ζ分布系数建立的,并且仅取决于数据的秩。通过模拟研究,用两个众所周知的风险对所提出的估计器进行了评估。最后,对新冠肺炎病例的每日计数进行了分析,以显示如何在实践中使用所提出的估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信