Evolution of turbulent mixing driven by implosion in spherical geometry

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tao Wang, Min Zhong, Bing Wang, Ping Li, J. Bai
{"title":"Evolution of turbulent mixing driven by implosion in spherical geometry","authors":"Tao Wang, Min Zhong, Bing Wang, Ping Li, J. Bai","doi":"10.1080/14685248.2023.2231878","DOIUrl":null,"url":null,"abstract":"The interface instability and turbulent mixing of perturbed multi-modes Air/SF6 interface driven by implosion in spherical geometry are numerically investigated. The results show the complex evolving laws and physical mechanisms of turbulent mixing. After the incident imploding shock, the transmitted shock wave moves towards the centre and bounces off outward to produce the second impact, which is a combination of reshock and Taylor wave rather than a single one like in planar case, and forms the loading/unloading effects. The following rebound impacts repeat this assembled loading/unloading process. In the whole process, the turbulent mixing zone (TMZ) growth is closely related to the multiple loading/unloading features. The Richtmyer-Meshkov instability (RMI), Rayleigh-Taylor instability (RTI), Rayleigh-Taylor stabilization (RTS) and Bell-Plesset (BP) effects coexist, and the competition mechanism results in the TMZ width growing in an oscillatory way. The statistics properties of TMZ are highly related to the multiple shocks process. The fluids mixing across TMZ is asymmetrical but behaves in a self-similar way. The evolution of TMZ has a high degree anisotropy, especially around the two edges of TMZ, the turbulent flow is also highly intermittent. When the turbulent mixing develops fully the energy spectra approach k -1 scaling law at the inertial subrange.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2023.2231878","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interface instability and turbulent mixing of perturbed multi-modes Air/SF6 interface driven by implosion in spherical geometry are numerically investigated. The results show the complex evolving laws and physical mechanisms of turbulent mixing. After the incident imploding shock, the transmitted shock wave moves towards the centre and bounces off outward to produce the second impact, which is a combination of reshock and Taylor wave rather than a single one like in planar case, and forms the loading/unloading effects. The following rebound impacts repeat this assembled loading/unloading process. In the whole process, the turbulent mixing zone (TMZ) growth is closely related to the multiple loading/unloading features. The Richtmyer-Meshkov instability (RMI), Rayleigh-Taylor instability (RTI), Rayleigh-Taylor stabilization (RTS) and Bell-Plesset (BP) effects coexist, and the competition mechanism results in the TMZ width growing in an oscillatory way. The statistics properties of TMZ are highly related to the multiple shocks process. The fluids mixing across TMZ is asymmetrical but behaves in a self-similar way. The evolution of TMZ has a high degree anisotropy, especially around the two edges of TMZ, the turbulent flow is also highly intermittent. When the turbulent mixing develops fully the energy spectra approach k -1 scaling law at the inertial subrange.
球形几何中内爆驱动的湍流混合演化
用数值方法研究了球面几何内爆驱动的多模扰动空气/SF6界面的不稳定性和湍流混合。结果显示了湍流混合的复杂演化规律和物理机制。在入射内爆激波发生后,透射激波向中心运动并向外反弹产生第二次冲击,而不是像平面情况那样只有一次泰勒波,而是一次再激波和一次泰勒波的结合,形成了加载/卸载效应。下面的回弹冲击重复这个组装的加载/卸载过程。在整个过程中,湍流混合区(TMZ)的增长与多重加载/卸载特性密切相关。richmyer - meshkov不稳定性(RMI)、Rayleigh-Taylor不稳定性(RTI)、Rayleigh-Taylor稳定化(RTS)和Bell-Plesset (BP)效应同时存在,竞争机制导致TMZ宽度振荡增长。TMZ的统计特性与多次冲击过程高度相关。在TMZ上混合的流体是不对称的,但表现出自相似的方式。TMZ的演化具有高度的各向异性,特别是在TMZ的两个边缘附近,湍流流动也具有高度的间歇性。当湍流混合充分发展时,能谱在惯性子范围内接近k -1标度定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信