Agricultural soil health monitoring using photonic crystal fiber based on combined principles of surface plasmon resonance and interferometry for lead ion detection
Sudipta Kumari Panigrahy, Preeti Das, S. K. Tripathy
{"title":"Agricultural soil health monitoring using photonic crystal fiber based on combined principles of surface plasmon resonance and interferometry for lead ion detection","authors":"Sudipta Kumari Panigrahy, Preeti Das, S. K. Tripathy","doi":"10.1117/1.JNP.17.036013","DOIUrl":null,"url":null,"abstract":"Abstract. To monitor the health of agricultural soil, lead (Pb2 + ) ion measurement is essential. The various sensors for lead ion detection reported in the literature earlier are either expensive or have complicated designs. This inspired us to propose a fiber optic sensor that is simple in design, less expensive, and more efficient. A photonic crystal fiber (PCF)-unclad single mode fiber (SMF)-PCF hybrid configuration makes up the suggested sensor, and the sensing mechanism is based on a synergistic application of surface plasmon resonance and interferometry. It is shown that the suggested structure is easy to use for Pb2 + ion detection, in addition to other advantages in limit of detection (LOD) and sensitivity. The proposed structure is optimized to attain a LOD of 8.32 mg / kg, which is much less than the permissible limit of Pb2 + ions permitted in healthy agricultural soil, i.e., 100 to 400 mg / kg. Additionally, a polymer that is attached atop the gold layer and to which only Pb2 + ions can adhere ensures the sensor’s specificity. To the best of our knowledge, our proposed optical fiber-based sensor design and approach adopted to detect lead ions in agricultural soil are the first of their kind.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"17 1","pages":"036013 - 036013"},"PeriodicalIF":1.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.036013","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. To monitor the health of agricultural soil, lead (Pb2 + ) ion measurement is essential. The various sensors for lead ion detection reported in the literature earlier are either expensive or have complicated designs. This inspired us to propose a fiber optic sensor that is simple in design, less expensive, and more efficient. A photonic crystal fiber (PCF)-unclad single mode fiber (SMF)-PCF hybrid configuration makes up the suggested sensor, and the sensing mechanism is based on a synergistic application of surface plasmon resonance and interferometry. It is shown that the suggested structure is easy to use for Pb2 + ion detection, in addition to other advantages in limit of detection (LOD) and sensitivity. The proposed structure is optimized to attain a LOD of 8.32 mg / kg, which is much less than the permissible limit of Pb2 + ions permitted in healthy agricultural soil, i.e., 100 to 400 mg / kg. Additionally, a polymer that is attached atop the gold layer and to which only Pb2 + ions can adhere ensures the sensor’s specificity. To the best of our knowledge, our proposed optical fiber-based sensor design and approach adopted to detect lead ions in agricultural soil are the first of their kind.
期刊介绍:
The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.