Zheng Yang, Jing Cui, Qiangjian Zhang, Chunli Yin, Li Yang, Pengfeng Qiu, Kai Hu, Junwen Yang
{"title":"Medium and Long Term Power Load Forecasting Based on Stacked-GRU","authors":"Zheng Yang, Jing Cui, Qiangjian Zhang, Chunli Yin, Li Yang, Pengfeng Qiu, Kai Hu, Junwen Yang","doi":"10.13052/spee1048-5236.4141","DOIUrl":null,"url":null,"abstract":"Power load forecasting plays a critical role in energy economy development and distribution of power systems. Predicting medium and long term power loads have facilitated the development of power grids. In this paper, a stacked-gated recurrent unit (Stacked-GRU) is applied to establish a power load forecasting model by integrating economic factors. Meanwhile, it also conducts medium and long term power load (MLTPL) forecasting based on the power load data of Yunnan Province from 2009 to 2020. By comparing different optimizers, it is found that the Adam optimizer works the best on the Stacked-GRU architecture. In the experiment of medium and long term power load forecasting for Yunnan Province, the values of MAPE, RMSE, and MAE of the model are 9.76%, 1.412, and 1.14, respectively, all of which outperform other deep learning comparison algorithms.","PeriodicalId":35712,"journal":{"name":"Strategic Planning for Energy and the Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Planning for Energy and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/spee1048-5236.4141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Power load forecasting plays a critical role in energy economy development and distribution of power systems. Predicting medium and long term power loads have facilitated the development of power grids. In this paper, a stacked-gated recurrent unit (Stacked-GRU) is applied to establish a power load forecasting model by integrating economic factors. Meanwhile, it also conducts medium and long term power load (MLTPL) forecasting based on the power load data of Yunnan Province from 2009 to 2020. By comparing different optimizers, it is found that the Adam optimizer works the best on the Stacked-GRU architecture. In the experiment of medium and long term power load forecasting for Yunnan Province, the values of MAPE, RMSE, and MAE of the model are 9.76%, 1.412, and 1.14, respectively, all of which outperform other deep learning comparison algorithms.