Asymptotic behavior of a three-dimensional haptotactic cross-diffusion system modeling oncolytic virotherapy

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yifu Wang, Chi Xu
{"title":"Asymptotic behavior of a three-dimensional haptotactic cross-diffusion system modeling oncolytic virotherapy","authors":"Yifu Wang, Chi Xu","doi":"10.1142/s0218202523400043","DOIUrl":null,"url":null,"abstract":"This paper deals with an initial-boundary value problem for a doubly haptotactic cross-diffusion system arising from the oncolytic virotherapy \\begin{equation*} \\left\\{ \\begin{array}{lll} u_t=\\Delta u-\\nabla \\cdot(u\\nabla v)+\\mu u(1-u)-uz,\\\\ v_t=-(u+w)v,\\\\ w_t=\\Delta w-\\nabla \\cdot(w\\nabla v)-w+uz,\\\\ z_t=D_z\\Delta z-z-uz+\\beta w, \\end{array} \\right. \\end{equation*} in a smoothly bounded domain $\\Omega\\subset \\mathbb{R}^3$ with $\\beta>0$,~$\\mu>0$ and $D_z>0$. Based on a self-map argument, it is shown that under the assumption $\\beta \\max \\{1,\\|u_0\\|_{L^{\\infty}(\\Omega)}\\}<1+ (1+\\frac1{\\min_{x\\in \\Omega}u_0(x)})^{-1}$, this problem possesses a uniquely determined global classical solution $(u,v,w,z)$ for certain type of small data $(u_0,v_0,w_0,z_0)$. Moreover, $(u,v,w,z)$ is globally bounded and exponentially stabilizes towards its spatially homogeneous equilibrium %constant equilibrium $(1,0,0,0)$ as $t\\rightarrow \\infty$.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218202523400043","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with an initial-boundary value problem for a doubly haptotactic cross-diffusion system arising from the oncolytic virotherapy \begin{equation*} \left\{ \begin{array}{lll} u_t=\Delta u-\nabla \cdot(u\nabla v)+\mu u(1-u)-uz,\\ v_t=-(u+w)v,\\ w_t=\Delta w-\nabla \cdot(w\nabla v)-w+uz,\\ z_t=D_z\Delta z-z-uz+\beta w, \end{array} \right. \end{equation*} in a smoothly bounded domain $\Omega\subset \mathbb{R}^3$ with $\beta>0$,~$\mu>0$ and $D_z>0$. Based on a self-map argument, it is shown that under the assumption $\beta \max \{1,\|u_0\|_{L^{\infty}(\Omega)}\}<1+ (1+\frac1{\min_{x\in \Omega}u_0(x)})^{-1}$, this problem possesses a uniquely determined global classical solution $(u,v,w,z)$ for certain type of small data $(u_0,v_0,w_0,z_0)$. Moreover, $(u,v,w,z)$ is globally bounded and exponentially stabilizes towards its spatially homogeneous equilibrium %constant equilibrium $(1,0,0,0)$ as $t\rightarrow \infty$.
模拟溶瘤病毒治疗的三维触觉交叉扩散系统的渐近行为
本文讨论了由溶瘤病毒治疗引起的双触觉交叉扩散系统的初边值问题\beart{equipment*}\left{\bearth{array}{lll}u _t=\Delta u-\nabla \cdot(u \nabla v)+\mu u(1-u)-uz,\\v_t=-(u+w)v,\\w_t=\Delta w-\nabla\cdot。\在$\beta>0$、~$\mu>0$和$D_z>0$的光滑有界域$\Omega\subet\mathbb{R}^3$中结束{方程*}。基于自映射论点,证明了在假设$\beta\max\{1,\|u_0\|_{L^{\infty}(\Omega)}<1+(1+\frac1{\min_{x\in\Omega}u_0(x)})^{-1}$下,对于某些类型的小数据$(u_0,v_0,w_0,z_0)$,该问题具有唯一确定的全局经典解$(u,v,w,z)$。此外,$(u,v,w,z)$是全局有界的,并且以$t\rightarrow\infty$的形式向其空间齐次平衡%恒定平衡$(1,0,0,0)$指数稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信